changed buckets from pdist to lat-lon
This commit is contained in:
		
							parent
							
								
									e59afa8c59
								
							
						
					
					
						commit
						f6fbdde273
					
				
					 2 changed files with 397 additions and 383 deletions
				
			
		
							
								
								
									
										702
									
								
								.Rhistory
									
										
									
									
									
								
							
							
						
						
									
										702
									
								
								.Rhistory
									
										
									
									
									
								
							|  | @ -1,338 +1,35 @@ | |||
| mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| #--- | ||||
| # Fields you want to query | ||||
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno", "tmstmp") | ||||
| # Creating an empty list to store results for each field | ||||
| results <- vector("list", length(fields)) | ||||
| # Loop through each field, get data, and coerce types if needed | ||||
| for (i in seq_along(fields)) { | ||||
| field <- fields[i] | ||||
| query_string <- glue('from(bucket: "{bucket}") ', | ||||
| '|> range(start: -{days}d) ', | ||||
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||
| '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||
| data <- influx_connection$query(query_string) | ||||
| # Ensure the columns are coerced to consistent types | ||||
| # (Optionally add coercion based on your expected types) | ||||
| data <- bind_rows(data) %>% | ||||
| mutate(value = as.character(`_value`), | ||||
| field = `_field`) %>% | ||||
| select(time, rt, pid, vid, value, field) | ||||
| results[[i]] <- data | ||||
| } | ||||
| query_string <- glue('from(bucket: "{bucket}") ', | ||||
| '|> range(start: -{days}d) ', | ||||
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||
| '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||
| data <- influx_connection$query(query_string) | ||||
| field <- spd | ||||
| field <- "spd" | ||||
| query_string <- glue('from(bucket: "{bucket}") ', | ||||
| '|> range(start: -{days}d) ', | ||||
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||
| '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||
| data <- influx_connection$query(query_string) | ||||
| View(data) | ||||
| #--- | ||||
| # Fields you want to query | ||||
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") | ||||
| # Creating an empty list to store results for each field | ||||
| results <- vector("list", length(fields)) | ||||
| # Loop through each field, get data, and coerce types if needed | ||||
| for (i in seq_along(fields)) { | ||||
| field <- fields[i] | ||||
| query_string <- glue('from(bucket: "{bucket}") ', | ||||
| '|> range(start: -{days}d) ', | ||||
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||
| '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||
| data <- influx_connection$query(query_string) | ||||
| # Ensure the columns are coerced to consistent types | ||||
| # (Optionally add coercion based on your expected types) | ||||
| data <- bind_rows(data) %>% | ||||
| mutate(value = as.character(`_value`), | ||||
| field = `_field`) %>% | ||||
| select(time, rt, pid, vid, value, field) | ||||
| results[[i]] <- data | ||||
| } | ||||
| # Bind all results together | ||||
| metro_raw <- bind_rows(results) | ||||
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% | ||||
| distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| group_by(origtatripno) %>% | ||||
| arrange(time) %>% | ||||
| mutate(lag_pdist = lag(pdist), | ||||
| lag_time = lag(time)) %>% | ||||
| mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||
| 1/364481.35 | ||||
| bucket_feet <- 200 | ||||
| bucket_lat <- bucket_feet/364481.35 | ||||
| bucket_lon <- bucket_feet/267203.05 | ||||
| bucket_feet <- 200 | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| st_as_sf(sf_column_name = "geometry") | ||||
| bucket_feet <- 500 | ||||
| lat_round <- bucket_feet/364481.35 | ||||
| lon_round <- bucket_feet/267203.05 | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(pdist_bucket, rt, des, pid) %>% | ||||
| summarise(lat = median(lat, na.rm = TRUE), | ||||
| lon = median(lon, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| lag_spd = median(lag_spd, na.rm = TRUE), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat = median(lat, na.rm = TRUE), | ||||
| lon = median(lon, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| lag_spd = median(lag_spd, na.rm = TRUE), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| View(metro_summary) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
| lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| lag_spd = median(lag_spd, na.rm = TRUE), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(pid, pdist_bucket) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(pid, pdist_bucket) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(vid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des, vid) %>% | ||||
| arrange(vid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des, vid) %>% | ||||
| arrange(pid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(pid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(pid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
| lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| lag_spd = median(lag_spd, na.rm = TRUE), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid, des) %>% | ||||
| arrange(pid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) | ||||
| View(metro_data_sf) | ||||
| # get counts of routes | ||||
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
| lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| lag_spd = median(lag_spd, na.rm = TRUE), | ||||
| pdist = median(pdist), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ||||
| aes(x = pdist, | ||||
| y = lag_spd)) + | ||||
| geom_point() + | ||||
| geom_smooth() + | ||||
| facet_grid(paste0(rt, "-", des) ~ .) | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| group_by(origtatripno) %>% | ||||
| arrange(time) %>% | ||||
| mutate(lag_pdist = lag(pdist), | ||||
| lag_time = lag(time)) %>% | ||||
| mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| bucket_feet <- 200 | ||||
| lat_round <- bucket_feet/364481.35 | ||||
| lon_round <- bucket_feet/267203.05 | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
| lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| group_by(rt, des, pid, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd = median(spd, na.rm = TRUE), | ||||
| spd_calc = median(spd_calc, na.rm = TRUE), | ||||
| pdist = median(pdist), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| metro_segments <- metro_summary %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pid, time) %>%  # Ensure points within each route are sorted if needed | ||||
| arrange(pdist) %>% | ||||
| mutate(lat_bucket_lag = lag(lat_bucket), | ||||
| lon_bucket_lag = lag(lon_bucket)) %>% | ||||
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag), | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% | ||||
| st_as_sf() | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pid, time) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pid, pdist) %>%  # Ensure points within each route are sorted if needed | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% | ||||
| st_as_sf() | ||||
| st_as_sf(sf_column_name = "geometry") | ||||
| # get counts of routes | ||||
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ||||
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_point() + | ||||
|  | @ -346,9 +43,7 @@ top = max(metro_data$lat)) | |||
| #get basemap | ||||
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") | ||||
| # A West | ||||
| quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1)) | ||||
| # A West | ||||
| quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| for (route in unique(routes_categorized$name)){ | ||||
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
| ggmap(basemap) + | ||||
|  | @ -364,7 +59,7 @@ y = NULL) + | |||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = segments_sf %>% filter(pid %in% route_focus), | ||||
| geom_sf(data = metro_segments %>% filter(pid %in% route_focus), | ||||
| inherit.aes = FALSE, | ||||
| aes(color = spd_calc), | ||||
| linewidth = 1) + | ||||
|  | @ -379,6 +74,189 @@ width = 11, | |||
| units = "in", | ||||
| create.dir = TRUE) | ||||
| } | ||||
| View(metro_data) | ||||
| View(metro_summary) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) | ||||
| View(metro_summary) | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd = median(spd, na.rm = TRUE), | ||||
| spd_calc = median(spd_calc, na.rm = TRUE), | ||||
| pdist = median(pdist), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| metro_segments <- metro_summary %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pdist) %>% | ||||
| mutate(lat_bucket_lag = lag(lat_bucket), | ||||
| lon_bucket_lag = lag(lon_bucket)) %>% | ||||
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
| mutate( | ||||
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag), | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| st_as_sf(sf_column_name = "geometry") %>% | ||||
| group_by(rt, name, lat_bucket, lon_bucket) %>% | ||||
| summarise(weighted.mean(spd_calc, trip_count)) | ||||
| View(metro_segments) | ||||
| metro_segments <- metro_summary %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pdist) %>% | ||||
| mutate(lat_bucket_lag = lag(lat_bucket), | ||||
| lon_bucket_lag = lag(lon_bucket)) %>% | ||||
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
| mutate( | ||||
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag), | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| st_as_sf(sf_column_name = "geometry") %>% | ||||
| group_by(rt, name, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd_calc = weighted.mean(spd_calc, trip_count)) | ||||
| View(metro_segments) | ||||
| for (route in unique(routes_categorized$name)){ | ||||
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
| ggmap(basemap) + | ||||
| labs(title = paste0("Metro Route Speed - ", route), | ||||
| subtitle = paste0("averaged between ", | ||||
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), | ||||
| " bus trips - ", | ||||
| min(date(metro_data$time)), | ||||
| " to ", | ||||
| max(date(metro_data$time))), | ||||
| x = NULL, | ||||
| y = NULL) + | ||||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = metro_segments %>% filter(pid %in% route_focus), | ||||
| inherit.aes = FALSE, | ||||
| aes(color = spd_calc), | ||||
| linewidth = 1) + | ||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||
| ggsave(file = paste0("figures/", | ||||
| route, | ||||
| ".pdf"), | ||||
| title = paste0("Metro Route Speed - ", route), | ||||
| device = pdf, | ||||
| height = 8.5, | ||||
| width = 11, | ||||
| units = "in", | ||||
| create.dir = TRUE) | ||||
| } | ||||
| for (route in unique(routes_categorized$name)){ | ||||
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
| ggmap(basemap) + | ||||
| labs(title = paste0("Metro Route Speed - ", route), | ||||
| subtitle = paste0("averaged between ", | ||||
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), | ||||
| " bus trips - ", | ||||
| min(date(metro_data$time)), | ||||
| " to ", | ||||
| max(date(metro_data$time))), | ||||
| x = NULL, | ||||
| y = NULL) + | ||||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = metro_segments %>% filter(name %in route), | ||||
| ggmap(basemap) + | ||||
| labs(title = paste0("Metro Route Speed - ", route), | ||||
| subtitle = paste0("averaged between ", | ||||
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), | ||||
| " bus trips - ", | ||||
| min(date(metro_data$time)), | ||||
| " to ", | ||||
| max(date(metro_data$time))), | ||||
| x = NULL, | ||||
| y = NULL) + | ||||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = metro_segments %>% filter(name %in% route), | ||||
| inherit.aes = FALSE, | ||||
| aes(color = spd_calc), | ||||
| linewidth = 1) + | ||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||
| for (route in unique(routes_categorized$name)){ | ||||
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
| ggmap(basemap) + | ||||
| labs(title = paste0("Metro Route Speed - ", route), | ||||
| subtitle = paste0("averaged between ", | ||||
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), | ||||
| " bus trips - ", | ||||
| min(date(metro_data$time)), | ||||
| " to ", | ||||
| max(date(metro_data$time))), | ||||
| x = NULL, | ||||
| y = NULL) + | ||||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = metro_segments %>% filter(name %in% route), | ||||
| inherit.aes = FALSE, | ||||
| aes(color = spd_calc), | ||||
| linewidth = 1) + | ||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||
| ggsave(file = paste0("figures/", | ||||
| route, | ||||
| ".pdf"), | ||||
| title = paste0("Metro Route Speed - ", route), | ||||
| device = pdf, | ||||
| height = 8.5, | ||||
| width = 11, | ||||
| units = "in", | ||||
| create.dir = TRUE) | ||||
| } | ||||
| # A West | ||||
| quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| group_by(pid, vid) %>% | ||||
| arrange(time) %>% | ||||
| mutate(pdist_lag = lag(pdist), | ||||
| time_lag = lag(time)) %>% | ||||
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA, | ||||
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>% | ||||
| left_join(routes_categorized, by = "pid") | ||||
| ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
| geom_violin(aes(x = time, | ||||
| y = spd_calc)) | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| mutate(date = date(time)) %>% | ||||
| group_by(pid, vid) %>% | ||||
| arrange(time) %>% | ||||
| mutate(pdist_lag = lag(pdist), | ||||
| time_lag = lag(time)) %>% | ||||
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA, | ||||
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>% | ||||
| left_join(routes_categorized, by = "pid") | ||||
| ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
| geom_violin(aes(x = time, | ||||
| y = spd_calc, | ||||
| group = date)) | ||||
| ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
| geom_violin(aes(x = date, | ||||
| y = spd_calc)) | ||||
| ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
| geom_boxplot(aes(x = date, | ||||
| y = spd_calc)) | ||||
| library(tidyverse) | ||||
| library(influxdbclient) | ||||
| library(glue) | ||||
|  | @ -417,60 +295,151 @@ results[[i]] <- data | |||
| metro_raw <- bind_rows(results) | ||||
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% | ||||
| distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| mutate(date = date(time)) %>% | ||||
| group_by(pid, vid) %>% | ||||
| arrange(time) %>% | ||||
| mutate(lag_pdist = lag(pdist), | ||||
| lag_time = lag(time)) %>% | ||||
| mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| bucket_feet <- 200 | ||||
| mutate(pdist_lag = lag(pdist), | ||||
| time_lag = lag(time)) %>% | ||||
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA, | ||||
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>% | ||||
| left_join(routes_categorized, by = "pid") | ||||
| bucket_feet <- 500 | ||||
| lat_round <- bucket_feet/364481.35 | ||||
| lon_round <- bucket_feet/267203.05 | ||||
| metro_summary <- metro_data %>% | ||||
| left_join(routes_categorized, by = "pid") %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
| summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
| lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
| spd = median(spd, na.rm = TRUE), | ||||
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd = median(spd, na.rm = TRUE), | ||||
| spd_calc = median(spd_calc, na.rm = TRUE), | ||||
| pdist = median(pdist), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| metro_segments <- metro_summary %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pid, pdist) %>%  # Ensure points within each route are sorted if needed | ||||
| arrange(pdist) %>% | ||||
| mutate(lat_bucket_lag = lag(lat_bucket), | ||||
| lon_bucket_lag = lag(lon_bucket)) %>% | ||||
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
| mutate( | ||||
| lead_geom = lead(geometry), | ||||
| lead_spd = lead(spd) | ||||
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag), | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| filter(!is.na(lead_geom)) %>% | ||||
| # Create a segment for each pair of points | ||||
| rowwise() %>% | ||||
| mutate( | ||||
| segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
| ) %>% | ||||
| ungroup() %>% | ||||
| as.data.frame() %>% | ||||
| select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% | ||||
| st_as_sf() | ||||
| st_as_sf(sf_column_name = "geometry") %>% | ||||
| group_by(rt, name, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd_calc = weighted.mean(spd_calc, trip_count)) | ||||
| # get counts of routes | ||||
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ||||
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_point() + | ||||
| geom_smooth() + | ||||
| facet_grid(paste0(rt, "-", des) ~ .) | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_point() + | ||||
| geom_smooth() + | ||||
| facet_grid(name ~ .) | ||||
| library(tidyverse) | ||||
| library(influxdbclient) | ||||
| library(glue) | ||||
| library(ggmap) | ||||
| library(sf) | ||||
| # parameters needed to make connection to Database | ||||
| token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) | ||||
| org <- "e2581d54779b077f" | ||||
| bucket <- "madison-metro" | ||||
| days <- 1 | ||||
| influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", | ||||
| token = token, | ||||
| org = org) | ||||
| #--- | ||||
| # Fields you want to query | ||||
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") | ||||
| # Creating an empty list to store results for each field | ||||
| results <- vector("list", length(fields)) | ||||
| # Loop through each field, get data, and coerce types if needed | ||||
| for (i in seq_along(fields)) { | ||||
| field <- fields[i] | ||||
| query_string <- glue('from(bucket: "{bucket}") ', | ||||
| '|> range(start: -{days}d) ', | ||||
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||
| '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||
| data <- influx_connection$query(query_string) | ||||
| # Ensure the columns are coerced to consistent types | ||||
| # (Optionally add coercion based on your expected types) | ||||
| data <- bind_rows(data) %>% | ||||
| mutate(value = as.character(`_value`), | ||||
| field = `_field`) %>% | ||||
| select(time, rt, pid, vid, value, field) | ||||
| results[[i]] <- data | ||||
| } | ||||
| # Bind all results together | ||||
| metro_raw <- bind_rows(results) | ||||
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% | ||||
| distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| metro_data <- metro_raw %>% | ||||
| mutate(time = with_tz(time, "America/Chicago"), | ||||
| spd = as.double(spd), | ||||
| pdist = as.double(pdist), | ||||
| lon = as.double(lon), | ||||
| lat = as.double(lat)) %>% | ||||
| mutate(date = date(time)) %>% | ||||
| group_by(pid, vid) %>% | ||||
| arrange(time) %>% | ||||
| mutate(pdist_lag = lag(pdist), | ||||
| time_lag = lag(time)) %>% | ||||
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA, | ||||
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>% | ||||
| left_join(routes_categorized, by = "pid") | ||||
| bucket_feet <- 500 | ||||
| lat_round <- bucket_feet/364481.35 | ||||
| lon_round <- bucket_feet/267203.05 | ||||
| metro_summary <- metro_data %>% | ||||
| mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
| lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd = median(spd, na.rm = TRUE), | ||||
| spd_calc = median(spd_calc, na.rm = TRUE), | ||||
| pdist = median(pdist), | ||||
| trip_count = length(unique(origtatripno))) | ||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| metro_segments <- metro_summary %>% | ||||
| group_by(rt, pid) %>% | ||||
| arrange(pdist) %>% | ||||
| mutate(lat_bucket_lag = lag(lat_bucket), | ||||
| lon_bucket_lag = lag(lon_bucket)) %>% | ||||
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
| mutate( | ||||
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag), | ||||
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
| ) %>% | ||||
| st_as_sf(sf_column_name = "geometry") %>% | ||||
| group_by(rt, name, lat_bucket, lon_bucket) %>% | ||||
| summarise(spd_calc = weighted.mean(spd_calc, trip_count)) | ||||
| # get counts of routes | ||||
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_point() + | ||||
| geom_smooth() + | ||||
| facet_grid(name ~ .) | ||||
| register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) | ||||
| bbox <- c(left = min(metro_data$lon), | ||||
| bottom = min(metro_data$lat), | ||||
|  | @ -478,8 +447,7 @@ right = max(metro_data$lon), | |||
| top = max(metro_data$lat)) | ||||
| #get basemap | ||||
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") | ||||
| # A West | ||||
| quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| for (route in unique(routes_categorized$name)){ | ||||
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
| ggmap(basemap) + | ||||
|  | @ -495,14 +463,26 @@ y = NULL) + | |||
| theme(axis.text=element_blank(), | ||||
| axis.ticks=element_blank(), | ||||
| plot.caption = element_text(color = "grey")) + | ||||
| geom_sf(data = segments_sf %>% filter(pid %in% route_focus), | ||||
| geom_sf(data = metro_segments %>% filter(name %in% route), | ||||
| inherit.aes = FALSE, | ||||
| aes(color = spd_calc), | ||||
| linewidth = 1) + | ||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||
| ggsave(file = paste0("figures/", | ||||
| route, | ||||
| ".pdf"), | ||||
| "_map.pdf"), | ||||
| title = paste0("Metro Route Speed - ", route), | ||||
| device = pdf, | ||||
| height = 8.5, | ||||
| width = 11, | ||||
| units = "in", | ||||
| create.dir = TRUE) | ||||
| ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
| geom_boxplot(aes(x = date, | ||||
| y = spd_calc)) | ||||
| ggsave(file = paste0("figures/", | ||||
| route, | ||||
| "_date.pdf"), | ||||
| title = paste0("Metro Route Speed - ", route), | ||||
| device = pdf, | ||||
| height = 8.5, | ||||
|  | @ -510,3 +490,23 @@ width = 11, | |||
| units = "in", | ||||
| create.dir = TRUE) | ||||
| } | ||||
| ggplot(data = metro_summary %>% filter(!is.blank(name)), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_boxplot() | ||||
| ggplot(data = metro_summary %>% filter(!is.na(name)), | ||||
| aes(x = pdist, | ||||
| y = spd_calc)) + | ||||
| geom_boxplot() | ||||
| ggplot(data = metro_summary %>% filter(!is.na(name)), | ||||
| aes(x = name, | ||||
| y = spd_calc)) + | ||||
| geom_boxplot() | ||||
| ggplot(data = metro_summary %>% filter(!is.na(name)), | ||||
| aes(x = name, | ||||
| y = spd_calc)) + | ||||
| geom_violin() | ||||
| ggplot(data = metro_summary %>% filter(!is.na(name)), | ||||
| aes(x = name, | ||||
| y = spd_calc)) + | ||||
| geom_boxplot() | ||||
|  |  | |||
|  | @ -15,10 +15,10 @@ influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net" | |||
|                                 token = token, | ||||
|                                 org = org) | ||||
| #--- | ||||
| # Fields you want to query | ||||
| # Fields to query | ||||
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") | ||||
| 
 | ||||
| # Creating an empty list to store results for each field | ||||
| # An empty list to store results for each field | ||||
| results <- vector("list", length(fields)) | ||||
| 
 | ||||
| # Loop through each field, get data, and coerce types if needed | ||||
|  | @ -48,33 +48,34 @@ metro_raw <- bind_rows(results) | |||
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% | ||||
|   distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) | ||||
| 
 | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| 
 | ||||
| metro_data <- metro_raw %>% | ||||
|   mutate(time = with_tz(time, "America/Chicago"), | ||||
|          spd = as.double(spd), | ||||
|          pdist = as.double(pdist), | ||||
|          lon = as.double(lon), | ||||
|          lat = as.double(lat)) %>% | ||||
|   mutate(date = date(time)) %>% | ||||
|   group_by(pid, vid) %>% | ||||
|   arrange(time) %>% | ||||
|   mutate(lag_pdist = lag(pdist), | ||||
|          lag_time = lag(time)) %>% | ||||
|   mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||
|   mutate(pdist_lag = lag(pdist), | ||||
|          time_lag = lag(time)) %>% | ||||
|   mutate(spd_calc = case_when(pdist_lag > pdist ~ NA, | ||||
|                               pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>% | ||||
|   left_join(routes_categorized, by = "pid") | ||||
| 
 | ||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||
| 
 | ||||
| bucket_feet <- 200 | ||||
| bucket_feet <- 500 | ||||
| 
 | ||||
| lat_round <- bucket_feet/364481.35 | ||||
| lon_round <- bucket_feet/267203.05 | ||||
| 
 | ||||
| metro_summary <- metro_data %>% | ||||
|   left_join(routes_categorized, by = "pid") %>% | ||||
|   mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||
|          lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||
|   group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||
|   summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||
|             lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||
|             spd = median(spd, na.rm = TRUE), | ||||
|   group_by(rt, name, pid, lat_bucket, lon_bucket) %>% | ||||
|   summarise(spd = median(spd, na.rm = TRUE), | ||||
|             spd_calc = median(spd_calc, na.rm = TRUE), | ||||
|             pdist = median(pdist), | ||||
|             trip_count = length(unique(origtatripno))) | ||||
|  | @ -82,34 +83,35 @@ metro_summary <- metro_data %>% | |||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||
| 
 | ||||
| segments_sf <- metro_summary_sf %>% | ||||
| metro_segments <- metro_summary %>% | ||||
|   group_by(rt, pid) %>% | ||||
|   arrange(pid, pdist) %>%  # Ensure points within each route are sorted if needed | ||||
|   arrange(pdist) %>% | ||||
|   mutate(lat_bucket_lag = lag(lat_bucket), | ||||
|          lon_bucket_lag = lag(lon_bucket)) %>% | ||||
|   filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>% | ||||
|   mutate( | ||||
|     lead_geom = lead(geometry), | ||||
|     lead_spd = lead(spd) | ||||
|     geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),  | ||||
|                     ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE))) | ||||
|   ) %>% | ||||
|   filter(!is.na(lead_geom)) %>% | ||||
|   # Create a segment for each pair of points | ||||
|   rowwise() %>% | ||||
|   mutate( | ||||
|     segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") | ||||
|   ) %>% | ||||
|   ungroup() %>% | ||||
|   as.data.frame() %>% | ||||
|   select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% | ||||
|   st_as_sf() | ||||
|   st_as_sf(sf_column_name = "geometry") %>% | ||||
|   group_by(rt, name, lat_bucket, lon_bucket) %>% | ||||
|   summarise(spd_calc = weighted.mean(spd_calc, trip_count)) | ||||
| 
 | ||||
| # get counts of routes | ||||
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) | ||||
| 
 | ||||
| # make charts | ||||
| ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ||||
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))), | ||||
|        aes(x = pdist, | ||||
|            y = spd_calc)) + | ||||
|   geom_point() + | ||||
|   geom_smooth() + | ||||
|   facet_grid(paste0(rt, "-", des) ~ .) | ||||
|   facet_grid(name ~ .) | ||||
| 
 | ||||
| ggplot(data = metro_summary %>% filter(!is.na(name)), | ||||
|        aes(x = name, | ||||
|            y = spd_calc)) + | ||||
|   geom_boxplot() | ||||
| 
 | ||||
| register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) | ||||
| 
 | ||||
|  | @ -121,8 +123,7 @@ bbox <- c(left = min(metro_data$lon), | |||
| #get basemap | ||||
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") | ||||
| 
 | ||||
| # A West | ||||
| quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||
| 
 | ||||
| for (route in unique(routes_categorized$name)){ | ||||
|   route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||
|  | @ -139,14 +140,27 @@ for (route in unique(routes_categorized$name)){ | |||
|     theme(axis.text=element_blank(), | ||||
|           axis.ticks=element_blank(), | ||||
|           plot.caption = element_text(color = "grey")) + | ||||
|     geom_sf(data = segments_sf %>% filter(pid %in% route_focus), | ||||
|     geom_sf(data = metro_segments %>% filter(name %in% route), | ||||
|             inherit.aes = FALSE, | ||||
|             aes(color = spd_calc), | ||||
|             linewidth = 1) + | ||||
|     scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||
|   ggsave(file = paste0("figures/", | ||||
|                        route, | ||||
|                        ".pdf"), | ||||
|                        "_map.pdf"), | ||||
|          title = paste0("Metro Route Speed - ", route), | ||||
|          device = pdf, | ||||
|          height = 8.5, | ||||
|          width = 11, | ||||
|          units = "in", | ||||
|          create.dir = TRUE) | ||||
| 
 | ||||
|   ggplot(data = metro_data %>% filter(name %in% route)) + | ||||
|     geom_boxplot(aes(x = date, | ||||
|                     y = spd_calc)) | ||||
|   ggsave(file = paste0("figures/", | ||||
|                        route, | ||||
|                        "_date.pdf"), | ||||
|          title = paste0("Metro Route Speed - ", route), | ||||
|          device = pdf, | ||||
|          height = 8.5, | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 Ben Varick
						Ben Varick