512 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
			
		
		
	
	
			512 lines
		
	
	
	
		
			19 KiB
		
	
	
	
		
			Text
		
	
	
	
	
	
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry")
 | |
| bucket_feet <- 500
 | |
| lat_round <- bucket_feet/364481.35
 | |
| lon_round <- bucket_feet/267203.05
 | |
| metro_summary <- metro_data %>%
 | |
| left_join(routes_categorized, by = "pid") %>%
 | |
| mutate(lat_bucket = round(lat / lat_round) * lat_round,
 | |
| lon_bucket = round(lon / lon_round) * lon_round) %>%
 | |
| group_by(rt, des, pid, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd = median(spd, na.rm = TRUE),
 | |
| spd_calc = median(spd_calc, na.rm = TRUE),
 | |
| pdist = median(pdist),
 | |
| trip_count = length(unique(origtatripno)))
 | |
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
 | |
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
 | |
| metro_segments <- metro_summary %>%
 | |
| group_by(rt, pid) %>%
 | |
| arrange(pdist) %>%
 | |
| mutate(lat_bucket_lag = lag(lat_bucket),
 | |
| lon_bucket_lag = lag(lon_bucket)) %>%
 | |
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
 | |
| mutate(
 | |
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
 | |
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry")
 | |
| # get counts of routes
 | |
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
 | |
| # make charts
 | |
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_point() +
 | |
| geom_smooth() +
 | |
| facet_grid(paste0(rt, "-", des) ~ .)
 | |
| register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
 | |
| bbox <- c(left = min(metro_data$lon),
 | |
| bottom = min(metro_data$lat),
 | |
| right = max(metro_data$lon),
 | |
| top = max(metro_data$lat))
 | |
| #get basemap
 | |
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
 | |
| # A West
 | |
| quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
 | |
| for (route in unique(routes_categorized$name)){
 | |
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(pid %in% route_focus),
 | |
| inherit.aes = FALSE,
 | |
| aes(color = spd_calc),
 | |
| linewidth = 1) +
 | |
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
 | |
| ggsave(file = paste0("figures/",
 | |
| route,
 | |
| ".pdf"),
 | |
| title = paste0("Metro Route Speed - ", route),
 | |
| device = pdf,
 | |
| height = 8.5,
 | |
| width = 11,
 | |
| units = "in",
 | |
| create.dir = TRUE)
 | |
| }
 | |
| View(metro_data)
 | |
| View(metro_summary)
 | |
| metro_summary <- metro_data %>%
 | |
| left_join(routes_categorized, by = "pid") %>%
 | |
| mutate(lat_bucket = round(lat / lat_round) * lat_round,
 | |
| lon_bucket = round(lon / lon_round) * lon_round)
 | |
| View(metro_summary)
 | |
| metro_summary <- metro_data %>%
 | |
| left_join(routes_categorized, by = "pid") %>%
 | |
| mutate(lat_bucket = round(lat / lat_round) * lat_round,
 | |
| lon_bucket = round(lon / lon_round) * lon_round) %>%
 | |
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd = median(spd, na.rm = TRUE),
 | |
| spd_calc = median(spd_calc, na.rm = TRUE),
 | |
| pdist = median(pdist),
 | |
| trip_count = length(unique(origtatripno)))
 | |
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
 | |
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
 | |
| metro_segments <- metro_summary %>%
 | |
| group_by(rt, pid) %>%
 | |
| arrange(pdist) %>%
 | |
| mutate(lat_bucket_lag = lag(lat_bucket),
 | |
| lon_bucket_lag = lag(lon_bucket)) %>%
 | |
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
 | |
| mutate(
 | |
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
 | |
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry") %>%
 | |
| group_by(rt, name, lat_bucket, lon_bucket) %>%
 | |
| summarise(weighted.mean(spd_calc, trip_count))
 | |
| View(metro_segments)
 | |
| metro_segments <- metro_summary %>%
 | |
| group_by(rt, pid) %>%
 | |
| arrange(pdist) %>%
 | |
| mutate(lat_bucket_lag = lag(lat_bucket),
 | |
| lon_bucket_lag = lag(lon_bucket)) %>%
 | |
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
 | |
| mutate(
 | |
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
 | |
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry") %>%
 | |
| group_by(rt, name, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd_calc = weighted.mean(spd_calc, trip_count))
 | |
| View(metro_segments)
 | |
| for (route in unique(routes_categorized$name)){
 | |
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(pid %in% route_focus),
 | |
| inherit.aes = FALSE,
 | |
| aes(color = spd_calc),
 | |
| linewidth = 1) +
 | |
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
 | |
| ggsave(file = paste0("figures/",
 | |
| route,
 | |
| ".pdf"),
 | |
| title = paste0("Metro Route Speed - ", route),
 | |
| device = pdf,
 | |
| height = 8.5,
 | |
| width = 11,
 | |
| units = "in",
 | |
| create.dir = TRUE)
 | |
| }
 | |
| for (route in unique(routes_categorized$name)){
 | |
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(name %in route),
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(name %in% route),
 | |
| inherit.aes = FALSE,
 | |
| aes(color = spd_calc),
 | |
| linewidth = 1) +
 | |
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
 | |
| for (route in unique(routes_categorized$name)){
 | |
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(name %in% route),
 | |
| inherit.aes = FALSE,
 | |
| aes(color = spd_calc),
 | |
| linewidth = 1) +
 | |
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
 | |
| ggsave(file = paste0("figures/",
 | |
| route,
 | |
| ".pdf"),
 | |
| title = paste0("Metro Route Speed - ", route),
 | |
| device = pdf,
 | |
| height = 8.5,
 | |
| width = 11,
 | |
| units = "in",
 | |
| create.dir = TRUE)
 | |
| }
 | |
| # A West
 | |
| quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
 | |
| quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
 | |
| metro_data <- metro_raw %>%
 | |
| mutate(time = with_tz(time, "America/Chicago"),
 | |
| spd = as.double(spd),
 | |
| pdist = as.double(pdist),
 | |
| lon = as.double(lon),
 | |
| lat = as.double(lat)) %>%
 | |
| group_by(pid, vid) %>%
 | |
| arrange(time) %>%
 | |
| mutate(pdist_lag = lag(pdist),
 | |
| time_lag = lag(time)) %>%
 | |
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
 | |
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
 | |
| left_join(routes_categorized, by = "pid")
 | |
| ggplot(data = metro_data %>% filter(name %in% route)) +
 | |
| geom_violin(aes(x = time,
 | |
| y = spd_calc))
 | |
| metro_data <- metro_raw %>%
 | |
| mutate(time = with_tz(time, "America/Chicago"),
 | |
| spd = as.double(spd),
 | |
| pdist = as.double(pdist),
 | |
| lon = as.double(lon),
 | |
| lat = as.double(lat)) %>%
 | |
| mutate(date = date(time)) %>%
 | |
| group_by(pid, vid) %>%
 | |
| arrange(time) %>%
 | |
| mutate(pdist_lag = lag(pdist),
 | |
| time_lag = lag(time)) %>%
 | |
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
 | |
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
 | |
| left_join(routes_categorized, by = "pid")
 | |
| ggplot(data = metro_data %>% filter(name %in% route)) +
 | |
| geom_violin(aes(x = time,
 | |
| y = spd_calc,
 | |
| group = date))
 | |
| ggplot(data = metro_data %>% filter(name %in% route)) +
 | |
| geom_violin(aes(x = date,
 | |
| y = spd_calc))
 | |
| ggplot(data = metro_data %>% filter(name %in% route)) +
 | |
| geom_boxplot(aes(x = date,
 | |
| y = spd_calc))
 | |
| library(tidyverse)
 | |
| library(influxdbclient)
 | |
| library(glue)
 | |
| library(ggmap)
 | |
| library(sf)
 | |
| # parameters needed to make connection to Database
 | |
| token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
 | |
| org <- "e2581d54779b077f"
 | |
| bucket <- "madison-metro"
 | |
| days <- 1
 | |
| influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
 | |
| token = token,
 | |
| org = org)
 | |
| #---
 | |
| # Fields you want to query
 | |
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
 | |
| # Creating an empty list to store results for each field
 | |
| results <- vector("list", length(fields))
 | |
| # Loop through each field, get data, and coerce types if needed
 | |
| for (i in seq_along(fields)) {
 | |
| field <- fields[i]
 | |
| query_string <- glue('from(bucket: "{bucket}") ',
 | |
| '|> range(start: -{days}d) ',
 | |
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
 | |
| '|> filter(fn: (r) => r["_field"] == "{field}")')
 | |
| data <- influx_connection$query(query_string)
 | |
| # Ensure the columns are coerced to consistent types
 | |
| # (Optionally add coercion based on your expected types)
 | |
| data <- bind_rows(data) %>%
 | |
| mutate(value = as.character(`_value`),
 | |
| field = `_field`) %>%
 | |
| select(time, rt, pid, vid, value, field)
 | |
| results[[i]] <- data
 | |
| }
 | |
| # Bind all results together
 | |
| metro_raw <- bind_rows(results)
 | |
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
 | |
| distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
 | |
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
 | |
| metro_data <- metro_raw %>%
 | |
| mutate(time = with_tz(time, "America/Chicago"),
 | |
| spd = as.double(spd),
 | |
| pdist = as.double(pdist),
 | |
| lon = as.double(lon),
 | |
| lat = as.double(lat)) %>%
 | |
| mutate(date = date(time)) %>%
 | |
| group_by(pid, vid) %>%
 | |
| arrange(time) %>%
 | |
| mutate(pdist_lag = lag(pdist),
 | |
| time_lag = lag(time)) %>%
 | |
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
 | |
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
 | |
| left_join(routes_categorized, by = "pid")
 | |
| bucket_feet <- 500
 | |
| lat_round <- bucket_feet/364481.35
 | |
| lon_round <- bucket_feet/267203.05
 | |
| metro_summary <- metro_data %>%
 | |
| mutate(lat_bucket = round(lat / lat_round) * lat_round,
 | |
| lon_bucket = round(lon / lon_round) * lon_round) %>%
 | |
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd = median(spd, na.rm = TRUE),
 | |
| spd_calc = median(spd_calc, na.rm = TRUE),
 | |
| pdist = median(pdist),
 | |
| trip_count = length(unique(origtatripno)))
 | |
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
 | |
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
 | |
| metro_segments <- metro_summary %>%
 | |
| group_by(rt, pid) %>%
 | |
| arrange(pdist) %>%
 | |
| mutate(lat_bucket_lag = lag(lat_bucket),
 | |
| lon_bucket_lag = lag(lon_bucket)) %>%
 | |
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
 | |
| mutate(
 | |
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
 | |
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry") %>%
 | |
| group_by(rt, name, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd_calc = weighted.mean(spd_calc, trip_count))
 | |
| # get counts of routes
 | |
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
 | |
| # make charts
 | |
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_point() +
 | |
| geom_smooth() +
 | |
| facet_grid(paste0(rt, "-", des) ~ .)
 | |
| # make charts
 | |
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_point() +
 | |
| geom_smooth() +
 | |
| facet_grid(name ~ .)
 | |
| library(tidyverse)
 | |
| library(influxdbclient)
 | |
| library(glue)
 | |
| library(ggmap)
 | |
| library(sf)
 | |
| # parameters needed to make connection to Database
 | |
| token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
 | |
| org <- "e2581d54779b077f"
 | |
| bucket <- "madison-metro"
 | |
| days <- 1
 | |
| influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
 | |
| token = token,
 | |
| org = org)
 | |
| #---
 | |
| # Fields you want to query
 | |
| fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
 | |
| # Creating an empty list to store results for each field
 | |
| results <- vector("list", length(fields))
 | |
| # Loop through each field, get data, and coerce types if needed
 | |
| for (i in seq_along(fields)) {
 | |
| field <- fields[i]
 | |
| query_string <- glue('from(bucket: "{bucket}") ',
 | |
| '|> range(start: -{days}d) ',
 | |
| '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
 | |
| '|> filter(fn: (r) => r["_field"] == "{field}")')
 | |
| data <- influx_connection$query(query_string)
 | |
| # Ensure the columns are coerced to consistent types
 | |
| # (Optionally add coercion based on your expected types)
 | |
| data <- bind_rows(data) %>%
 | |
| mutate(value = as.character(`_value`),
 | |
| field = `_field`) %>%
 | |
| select(time, rt, pid, vid, value, field)
 | |
| results[[i]] <- data
 | |
| }
 | |
| # Bind all results together
 | |
| metro_raw <- bind_rows(results)
 | |
| metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
 | |
| distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
 | |
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
 | |
| metro_data <- metro_raw %>%
 | |
| mutate(time = with_tz(time, "America/Chicago"),
 | |
| spd = as.double(spd),
 | |
| pdist = as.double(pdist),
 | |
| lon = as.double(lon),
 | |
| lat = as.double(lat)) %>%
 | |
| mutate(date = date(time)) %>%
 | |
| group_by(pid, vid) %>%
 | |
| arrange(time) %>%
 | |
| mutate(pdist_lag = lag(pdist),
 | |
| time_lag = lag(time)) %>%
 | |
| mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
 | |
| pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
 | |
| left_join(routes_categorized, by = "pid")
 | |
| bucket_feet <- 500
 | |
| lat_round <- bucket_feet/364481.35
 | |
| lon_round <- bucket_feet/267203.05
 | |
| metro_summary <- metro_data %>%
 | |
| mutate(lat_bucket = round(lat / lat_round) * lat_round,
 | |
| lon_bucket = round(lon / lon_round) * lon_round) %>%
 | |
| group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd = median(spd, na.rm = TRUE),
 | |
| spd_calc = median(spd_calc, na.rm = TRUE),
 | |
| pdist = median(pdist),
 | |
| trip_count = length(unique(origtatripno)))
 | |
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
 | |
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
 | |
| metro_segments <- metro_summary %>%
 | |
| group_by(rt, pid) %>%
 | |
| arrange(pdist) %>%
 | |
| mutate(lat_bucket_lag = lag(lat_bucket),
 | |
| lon_bucket_lag = lag(lon_bucket)) %>%
 | |
| filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
 | |
| mutate(
 | |
| geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
 | |
| ~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
 | |
| ) %>%
 | |
| st_as_sf(sf_column_name = "geometry") %>%
 | |
| group_by(rt, name, lat_bucket, lon_bucket) %>%
 | |
| summarise(spd_calc = weighted.mean(spd_calc, trip_count))
 | |
| # get counts of routes
 | |
| route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
 | |
| # make charts
 | |
| ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_point() +
 | |
| geom_smooth() +
 | |
| facet_grid(name ~ .)
 | |
| register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
 | |
| bbox <- c(left = min(metro_data$lon),
 | |
| bottom = min(metro_data$lat),
 | |
| right = max(metro_data$lon),
 | |
| top = max(metro_data$lat))
 | |
| #get basemap
 | |
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
 | |
| quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
 | |
| for (route in unique(routes_categorized$name)){
 | |
| route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
 | |
| ggmap(basemap) +
 | |
| labs(title = paste0("Metro Route Speed - ", route),
 | |
| subtitle = paste0("averaged between ",
 | |
| sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
 | |
| " bus trips - ",
 | |
| min(date(metro_data$time)),
 | |
| " to ",
 | |
| max(date(metro_data$time))),
 | |
| x = NULL,
 | |
| y = NULL) +
 | |
| theme(axis.text=element_blank(),
 | |
| axis.ticks=element_blank(),
 | |
| plot.caption = element_text(color = "grey")) +
 | |
| geom_sf(data = metro_segments %>% filter(name %in% route),
 | |
| inherit.aes = FALSE,
 | |
| aes(color = spd_calc),
 | |
| linewidth = 1) +
 | |
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
 | |
| ggsave(file = paste0("figures/",
 | |
| route,
 | |
| "_map.pdf"),
 | |
| title = paste0("Metro Route Speed - ", route),
 | |
| device = pdf,
 | |
| height = 8.5,
 | |
| width = 11,
 | |
| units = "in",
 | |
| create.dir = TRUE)
 | |
| ggplot(data = metro_data %>% filter(name %in% route)) +
 | |
| geom_boxplot(aes(x = date,
 | |
| y = spd_calc))
 | |
| ggsave(file = paste0("figures/",
 | |
| route,
 | |
| "_date.pdf"),
 | |
| title = paste0("Metro Route Speed - ", route),
 | |
| device = pdf,
 | |
| height = 8.5,
 | |
| width = 11,
 | |
| units = "in",
 | |
| create.dir = TRUE)
 | |
| }
 | |
| ggplot(data = metro_summary %>% filter(!is.blank(name)),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_boxplot()
 | |
| ggplot(data = metro_summary %>% filter(!is.na(name)),
 | |
| aes(x = pdist,
 | |
| y = spd_calc)) +
 | |
| geom_boxplot()
 | |
| ggplot(data = metro_summary %>% filter(!is.na(name)),
 | |
| aes(x = name,
 | |
| y = spd_calc)) +
 | |
| geom_boxplot()
 | |
| ggplot(data = metro_summary %>% filter(!is.na(name)),
 | |
| aes(x = name,
 | |
| y = spd_calc)) +
 | |
| geom_violin()
 | |
| ggplot(data = metro_summary %>% filter(!is.na(name)),
 | |
| aes(x = name,
 | |
| y = spd_calc)) +
 | |
| geom_boxplot()
 | 
