madison-metro/madison-metro.R
2024-11-20 16:20:48 -06:00

171 lines
6.1 KiB
R

library(tidyverse)
library(influxdbclient)
library(glue)
library(ggmap)
library(sf)
# parameters needed to make connection to Database
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
org <- "e2581d54779b077f"
bucket <- "madison-metro"
days <- 1
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
token = token,
org = org)
#---
# Fields to query
fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
# An empty list to store results for each field
results <- vector("list", length(fields))
# Loop through each field, get data, and coerce types if needed
for (i in seq_along(fields)) {
field <- fields[i]
query_string <- glue('from(bucket: "{bucket}") ',
'|> range(start: -{days}d) ',
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
'|> filter(fn: (r) => r["_field"] == "{field}")')
data <- influx_connection$query(query_string)
# Ensure the columns are coerced to consistent types
# (Optionally add coercion based on your expected types)
data <- bind_rows(data) %>%
mutate(value = as.character(`_value`),
field = `_field`) %>%
select(time, rt, pid, vid, value, field)
results[[i]] <- data
}
# Bind all results together
metro_raw <- bind_rows(results)
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
metro_data <- metro_raw %>%
mutate(time = with_tz(time, "America/Chicago"),
spd = as.double(spd),
pdist = as.double(pdist),
lon = as.double(lon),
lat = as.double(lat)) %>%
mutate(date = date(time)) %>%
group_by(pid, vid) %>%
arrange(time) %>%
mutate(pdist_lag = lag(pdist),
time_lag = lag(time)) %>%
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
left_join(routes_categorized, by = "pid")
bucket_feet <- 500
lat_round <- bucket_feet/364481.35
lon_round <- bucket_feet/267203.05
metro_summary <- metro_data %>%
mutate(lat_bucket = round(lat / lat_round) * lat_round,
lon_bucket = round(lon / lon_round) * lon_round) %>%
group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
summarise(spd = median(spd, na.rm = TRUE),
spd_calc = median(spd_calc, na.rm = TRUE),
pdist = median(pdist),
trip_count = length(unique(origtatripno)))
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
metro_segments <- metro_summary %>%
group_by(rt, pid) %>%
arrange(pdist) %>%
mutate(lat_bucket_lag = lag(lat_bucket),
lon_bucket_lag = lag(lon_bucket)) %>%
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
mutate(
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
) %>%
st_as_sf(sf_column_name = "geometry") %>%
group_by(rt, name, lat_bucket, lon_bucket) %>%
summarise(spd_calc = weighted.mean(spd_calc, trip_count))
# get counts of routes
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
# make charts
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
aes(x = pdist,
y = spd_calc)) +
geom_point() +
geom_smooth() +
facet_grid(name ~ .)
ggplot(data = metro_summary %>% filter(!is.na(name)),
aes(x = name,
y = spd_calc)) +
geom_boxplot()
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
bbox <- c(left = min(metro_data$lon),
bottom = min(metro_data$lat),
right = max(metro_data$lon),
top = max(metro_data$lat))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
for (route in unique(routes_categorized$name)){
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
ggmap(basemap) +
labs(title = paste0("Metro Route Speed - ", route),
subtitle = paste0("averaged between ",
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
" bus trips - ",
min(date(metro_data$time)),
" to ",
max(date(metro_data$time))),
x = NULL,
y = NULL) +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
geom_sf(data = metro_segments %>% filter(name %in% route),
inherit.aes = FALSE,
aes(color = spd_calc),
linewidth = 1) +
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
ggsave(file = paste0("figures/",
route,
"_map.pdf"),
title = paste0("Metro Route Speed - ", route),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
ggplot(data = metro_data %>% filter(name %in% route)) +
geom_boxplot(aes(x = date,
y = spd_calc))
ggsave(file = paste0("figures/",
route,
"_date.pdf"),
title = paste0("Metro Route Speed - ", route),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
}