131 lines
5.9 KiB
R
131 lines
5.9 KiB
R
|
library(tidyverse)
|
||
|
library(RColorBrewer)
|
||
|
library(tidycensus)
|
||
|
library(ggrepel)
|
||
|
|
||
|
## Load TOPS data ----
|
||
|
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
|
||
|
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
|
||
|
## Step 2 - include RACE1 and RACE2 for download in preferences
|
||
|
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
|
||
|
TOPS_data <- as.list(NULL)
|
||
|
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
||
|
message(paste("importing data from file: ", file))
|
||
|
year <- substr(file, 21, 24)
|
||
|
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
||
|
TOPS_data[[file]] <- csv_run
|
||
|
}
|
||
|
rm(csv_run, file, year)
|
||
|
TOPS_data <- bind_rows(TOPS_data)
|
||
|
|
||
|
## clean up data ----
|
||
|
TOPS_data <- TOPS_data %>%
|
||
|
mutate(date = mdy(CRSHDATE),
|
||
|
age1 = as.double(AGE1),
|
||
|
age2 = as.double(AGE2),
|
||
|
latitude = as.double(LATDECDG),
|
||
|
longitude = as.double(LONDECDG)) %>%
|
||
|
mutate(month = month(date, label = TRUE),
|
||
|
year = as.factor(year(date)))
|
||
|
|
||
|
# Injury Severy Index and Color -----
|
||
|
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
||
|
code = c("O", "C", "B", "A", "K"),
|
||
|
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
||
|
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(InjSevName1 = InjSevName)
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(InjSevName2 = InjSevName)
|
||
|
|
||
|
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"),
|
||
|
INJSVR1,
|
||
|
ifelse(ROLE2 %in% c("BIKE", "PED"),
|
||
|
INJSVR2,
|
||
|
NA)))
|
||
|
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(ped_inj_name = InjSevName)
|
||
|
|
||
|
# Race names
|
||
|
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
|
||
|
code = c("A", "B", "I", "H", "W"))
|
||
|
|
||
|
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
|
||
|
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
|
||
|
|
||
|
## make mutate TOPS_data
|
||
|
TOPS_data <- TOPS_data %>%
|
||
|
mutate(Year = year,
|
||
|
PedestrianInjurySeverity = ped_inj_name,
|
||
|
CrashDate = CRSHDATE,
|
||
|
CrashTime = CRSHTIME,
|
||
|
County = CNTYNAME,
|
||
|
Street = ONSTR,
|
||
|
CrossStreet = ATSTR) %>%
|
||
|
mutate(PedestrianAge = ifelse(ROLE1 %in% c("BIKE", "PED"), age1, age2))
|
||
|
|
||
|
# add population census data ----
|
||
|
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
||
|
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin") %>%
|
||
|
filter(variable == "POPESTIMATE") %>%
|
||
|
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
|
||
|
|
||
|
|
||
|
## generate county charts ----
|
||
|
county_focus <- unique(TOPS_data %>%
|
||
|
group_by(CNTYNAME) %>%
|
||
|
summarise(TotalCrashes = n()) %>%
|
||
|
slice_max(TotalCrashes, n = 8) %>%
|
||
|
pull(CNTYNAME))
|
||
|
|
||
|
|
||
|
TOPS_data %>%
|
||
|
group_by(CNTYNAME, Year) %>%
|
||
|
summarise(TotalCrashes = n()) %>%
|
||
|
mutate(County = CNTYNAME) %>%
|
||
|
left_join(county_populations, join_by("County")) %>%
|
||
|
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||
|
filter(County %in% county_focus) %>%
|
||
|
ggplot() +
|
||
|
geom_line(aes(x = Year,
|
||
|
y = CrashesPerPopulation,
|
||
|
color = str_to_title(CNTYNAME),
|
||
|
group = CNTYNAME),
|
||
|
size = 1) +
|
||
|
geom_label_repel(data = TOPS_data %>%
|
||
|
group_by(CNTYNAME, Year) %>%
|
||
|
summarise(TotalCrashes = n()) %>%
|
||
|
mutate(County = CNTYNAME) %>%
|
||
|
left_join(county_populations, join_by("County")) %>%
|
||
|
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||
|
filter(County %in% county_focus,
|
||
|
Year == 2023),
|
||
|
aes(x = Year,
|
||
|
y = CrashesPerPopulation,
|
||
|
label = str_to_title(County),
|
||
|
fill = County),
|
||
|
size=3,
|
||
|
min.segment.length=0,
|
||
|
segment.size = 0.25,
|
||
|
nudge_x=0.5,
|
||
|
direction="y") +
|
||
|
scale_color_brewer(type = "qual", guide = NULL) +
|
||
|
scale_fill_brewer(type = "qual", guide = NULL) +
|
||
|
scale_x_discrete(expand = expansion(add = c(0.5,0.75))) +
|
||
|
labs(title = "Drivers crashing into pedestrians & bicyclists per 100,000 residents",
|
||
|
subtitle = "2017-2023",
|
||
|
x = "Year",
|
||
|
y = "Total crashes per year per 100,000 residents",
|
||
|
color = "County",
|
||
|
caption = "data from UW TOPS lab\nretrieved 3/2024 per direction of the WisDOT Bureau of Transportation Safety") +
|
||
|
theme(plot.caption = element_text(color = "grey"))
|
||
|
|
||
|
ggsave(file = paste0("figures/crash_summaries/counties_year.pdf"),
|
||
|
height = 8.5,
|
||
|
width = 11,
|
||
|
units = "in")
|