added crash_summary_charts.R script
This commit is contained in:
parent
1a7a2bf3f8
commit
644d591fc8
BIN
figures/crash_summaries/counties_year.pdf
Normal file
BIN
figures/crash_summaries/counties_year.pdf
Normal file
Binary file not shown.
File diff suppressed because one or more lines are too long
130
scripts/crash_summary_charts.R
Normal file
130
scripts/crash_summary_charts.R
Normal file
@ -0,0 +1,130 @@
|
||||
library(tidyverse)
|
||||
library(RColorBrewer)
|
||||
library(tidycensus)
|
||||
library(ggrepel)
|
||||
|
||||
## Load TOPS data ----
|
||||
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
|
||||
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
|
||||
## Step 2 - include RACE1 and RACE2 for download in preferences
|
||||
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
|
||||
TOPS_data <- as.list(NULL)
|
||||
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
||||
message(paste("importing data from file: ", file))
|
||||
year <- substr(file, 21, 24)
|
||||
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
||||
TOPS_data[[file]] <- csv_run
|
||||
}
|
||||
rm(csv_run, file, year)
|
||||
TOPS_data <- bind_rows(TOPS_data)
|
||||
|
||||
## clean up data ----
|
||||
TOPS_data <- TOPS_data %>%
|
||||
mutate(date = mdy(CRSHDATE),
|
||||
age1 = as.double(AGE1),
|
||||
age2 = as.double(AGE2),
|
||||
latitude = as.double(LATDECDG),
|
||||
longitude = as.double(LONDECDG)) %>%
|
||||
mutate(month = month(date, label = TRUE),
|
||||
year = as.factor(year(date)))
|
||||
|
||||
# Injury Severy Index and Color -----
|
||||
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
||||
code = c("O", "C", "B", "A", "K"),
|
||||
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(InjSevName1 = InjSevName)
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(InjSevName2 = InjSevName)
|
||||
|
||||
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"),
|
||||
INJSVR1,
|
||||
ifelse(ROLE2 %in% c("BIKE", "PED"),
|
||||
INJSVR2,
|
||||
NA)))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(ped_inj_name = InjSevName)
|
||||
|
||||
# Race names
|
||||
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
|
||||
code = c("A", "B", "I", "H", "W"))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
|
||||
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
|
||||
|
||||
## make mutate TOPS_data
|
||||
TOPS_data <- TOPS_data %>%
|
||||
mutate(Year = year,
|
||||
PedestrianInjurySeverity = ped_inj_name,
|
||||
CrashDate = CRSHDATE,
|
||||
CrashTime = CRSHTIME,
|
||||
County = CNTYNAME,
|
||||
Street = ONSTR,
|
||||
CrossStreet = ATSTR) %>%
|
||||
mutate(PedestrianAge = ifelse(ROLE1 %in% c("BIKE", "PED"), age1, age2))
|
||||
|
||||
# add population census data ----
|
||||
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
||||
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin") %>%
|
||||
filter(variable == "POPESTIMATE") %>%
|
||||
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
|
||||
|
||||
|
||||
## generate county charts ----
|
||||
county_focus <- unique(TOPS_data %>%
|
||||
group_by(CNTYNAME) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
slice_max(TotalCrashes, n = 8) %>%
|
||||
pull(CNTYNAME))
|
||||
|
||||
|
||||
TOPS_data %>%
|
||||
group_by(CNTYNAME, Year) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
mutate(County = CNTYNAME) %>%
|
||||
left_join(county_populations, join_by("County")) %>%
|
||||
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||||
filter(County %in% county_focus) %>%
|
||||
ggplot() +
|
||||
geom_line(aes(x = Year,
|
||||
y = CrashesPerPopulation,
|
||||
color = str_to_title(CNTYNAME),
|
||||
group = CNTYNAME),
|
||||
size = 1) +
|
||||
geom_label_repel(data = TOPS_data %>%
|
||||
group_by(CNTYNAME, Year) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
mutate(County = CNTYNAME) %>%
|
||||
left_join(county_populations, join_by("County")) %>%
|
||||
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||||
filter(County %in% county_focus,
|
||||
Year == 2023),
|
||||
aes(x = Year,
|
||||
y = CrashesPerPopulation,
|
||||
label = str_to_title(County),
|
||||
fill = County),
|
||||
size=3,
|
||||
min.segment.length=0,
|
||||
segment.size = 0.25,
|
||||
nudge_x=0.5,
|
||||
direction="y") +
|
||||
scale_color_brewer(type = "qual", guide = NULL) +
|
||||
scale_fill_brewer(type = "qual", guide = NULL) +
|
||||
scale_x_discrete(expand = expansion(add = c(0.5,0.75))) +
|
||||
labs(title = "Drivers crashing into pedestrians & bicyclists per 100,000 residents",
|
||||
subtitle = "2017-2023",
|
||||
x = "Year",
|
||||
y = "Total crashes per year per 100,000 residents",
|
||||
color = "County",
|
||||
caption = "data from UW TOPS lab\nretrieved 3/2024 per direction of the WisDOT Bureau of Transportation Safety") +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
|
||||
ggsave(file = paste0("figures/crash_summaries/counties_year.pdf"),
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in")
|
@ -1,6 +1,6 @@
|
||||
library(tidyverse)
|
||||
library(sf)
|
||||
library(tmap)
|
||||
#library(tmap)
|
||||
library(leaflet)
|
||||
library(RColorBrewer)
|
||||
library(tidycensus)
|
||||
@ -81,17 +81,17 @@ focus_columns <- c("PedestrianInjurySeverity", "CrashDate", "CrashTime", "County
|
||||
focus_county <- "DANE"
|
||||
|
||||
## generate map with tmap ----
|
||||
tmap_mode("view")
|
||||
|
||||
Pedestrian_Crash_Data <- TOPS_geom %>%
|
||||
# filter(CNTYNAME == focus_county) %>%
|
||||
select(all_of(focus_columns))
|
||||
|
||||
tm_basemap("Stadia.AlidadeSmooth") +
|
||||
tm_shape(Pedestrian_Crash_Data) +
|
||||
tm_dots("PedestrianInjurySeverity", palette = injury_severity$color, popup.vars = focus_columns)
|
||||
|
||||
tmap_save(file = "figures/dynamic_crash_maps/dynamic_crash_map.html")
|
||||
# tmap_mode("view")
|
||||
#
|
||||
# Pedestrian_Crash_Data <- TOPS_geom %>%
|
||||
# # filter(CNTYNAME == focus_county) %>%
|
||||
# select(all_of(focus_columns))
|
||||
#
|
||||
# tm_basemap("Stadia.AlidadeSmooth") +
|
||||
# tm_shape(Pedestrian_Crash_Data) +
|
||||
# tm_dots("PedestrianInjurySeverity", palette = injury_severity$color, popup.vars = focus_columns)
|
||||
#
|
||||
# tmap_save(file = "figures/dynamic_crash_maps/dynamic_crash_map.html")
|
||||
|
||||
|
||||
# generate map with leaflet ----
|
||||
@ -138,7 +138,7 @@ tag.map.title <- tags$style(HTML("
|
||||
"))
|
||||
|
||||
title <- tags$div(
|
||||
tag.map.title, HTML("Pedestrian Crashes</br>2017-2023")
|
||||
tag.map.title, HTML("Pedestrians & Bicyclists hit by cars</br>2017-2023")
|
||||
)
|
||||
|
||||
tag.map.subtitle <- tags$style(HTML("
|
||||
@ -156,7 +156,7 @@ tag.map.subtitle <- tags$style(HTML("
|
||||
"))
|
||||
|
||||
subtitle <- tags$div(
|
||||
tag.map.subtitle, HTML("data from UW TOPS lab - retrieved 4/2024</br>per direction of the WisDOT Bureau of Transportation Safety")
|
||||
tag.map.subtitle, HTML("data from UW TOPS lab - retrieved 3/2024</br>per direction of the WisDOT Bureau of Transportation Safety")
|
||||
)
|
||||
|
||||
leaflet() %>%
|
||||
@ -193,3 +193,6 @@ leaflet() %>%
|
||||
# addLegendSize(position = "bottomright", color = "black", shape = "circle", values = County_Crash_Data$value.y, group = "Counties", title = "Population of County") %>%
|
||||
groupOptions(group ="Counties", zoomLevels = 1:9)
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user