480 lines
20 KiB
Plaintext
480 lines
20 KiB
Plaintext
---
|
|
title: "East High Cycling Routes"
|
|
output:
|
|
html_document:
|
|
toc: true
|
|
toc_depth: 5
|
|
toc_float:
|
|
collapsed: false
|
|
smooth_scroll: true
|
|
editor_options:
|
|
chunk_output_type: console
|
|
---
|
|
|
|
# Input Data & Configuration
|
|
|
|
## Libraries
|
|
|
|
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
date()
|
|
rm(list=ls())
|
|
library(tidyverse)
|
|
library(ggmap)
|
|
library(sf)
|
|
library(osrm)
|
|
library(smoothr)
|
|
library(magick)
|
|
library(ggnewscale)
|
|
library(rsvg)
|
|
library(httr)
|
|
library(jsonlite)
|
|
library(parallel)
|
|
fig.height <- 6
|
|
set.seed(1)
|
|
```
|
|
|
|
## School Location Data
|
|
|
|
```{r gpkg, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
WI_schools <- st_transform(st_read(dsn = "data/Schools/Wisconsin_Public_Schools_-5986231931870160084.gpkg"), crs = 4326)
|
|
WI_schools <- WI_schools %>% mutate(geom = SHAPE)
|
|
```
|
|
|
|
## Addresses Data
|
|
|
|
```{r addresses, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
addresses <- read_csv(file="data/addresses/Addresses_Students_EastHS_2024_GeocodeResults.csv") %>%
|
|
filter(lat > 0) %>%
|
|
st_as_sf(coords=c("lon","lat"), crs=4326)
|
|
```
|
|
(Remember that x = lon and y = lat.)
|
|
|
|
## Bike Level of Traffic Stress (LTS)
|
|
|
|
```{r bikelts, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
bike_lts <- st_transform(st_read("data/bike_lts/bike_lts_DANE.geojson"), crs = 4326)
|
|
# make lts attribute a factor
|
|
bike_lts[["lts"]] <- as.factor(bike_lts$LTS_F)
|
|
# remove segments with an LTS value of 9
|
|
bike_lts <- bike_lts %>% filter(lts != 9)
|
|
|
|
# set color scale
|
|
bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
|
|
color = c("#1a9641",
|
|
"#a6d96a",
|
|
"#fdae61",
|
|
"#d7191c",
|
|
"#d7191c"))
|
|
```
|
|
|
|
# External sources configurations
|
|
|
|
## Open Source Routing Machine (OSRM)
|
|
|
|
```{r osrm, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# Set url and profile of OSRM server
|
|
options(osrm.server = "http://127.0.0.1:5001/")
|
|
options(osrm.profile = "bike")
|
|
```
|
|
|
|
## Brouter options
|
|
```{r brouter, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# Set url and profile of brouter server
|
|
brouter_url <- "http://127.0.0.1:17777/brouter"
|
|
brouter_profile <- "safety"
|
|
```
|
|
|
|
## Stadia Maps API Key
|
|
|
|
```{r stadiamaps, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
```
|
|
# Analysis
|
|
|
|
```{r analysisPreamble, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
radius <- 3 # miles
|
|
levels <- c(1)
|
|
res <- 100
|
|
threshold <- 1
|
|
```
|
|
|
|
## Subset Addresses Within `r radius` Miles
|
|
|
|
```{r cycleBoundary, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
cycle_boundary_m <- radius*1609
|
|
school_focus <- data.frame(name = c("East High School"), NCES_CODE = c("550852000925"))
|
|
#school_focus <- data.frame(name = c("IMAP"), NCES_CODE = c("550008203085"))
|
|
|
|
cycle_boundary_poly <- st_transform(fill_holes(st_make_valid(osrmIsodistance(
|
|
loc = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
|
# breaks = c(cycle_boundary_m),
|
|
breaks = cycle_boundary_m*levels,
|
|
res = res)
|
|
), units::set_units(threshold, km^2)), crs = 4326)
|
|
|
|
addresses_near <- st_intersection(addresses, cycle_boundary_poly)
|
|
```
|
|
Notes:
|
|
|
|
- _osrmIsoDistance_ is the primary function in the above chunk.
|
|
- This function computes areas that are reachable within a given road
|
|
distance from a point and returns the reachable regions as
|
|
polygons. These areas of equal travel distance are called isodistances.
|
|
- Input is a point represented as an sf object (extended
|
|
data.frame-like objects with a simple feature list column) could be
|
|
other classes, e.g., vector of coods, data.frame of lat tand
|
|
long. etc.
|
|
- Arguments to osrmIsodistances used here are breaks and res
|
|
- breaks: a numeric vector of break values to define isodistance areas, in meters.
|
|
- res: number of points used to compute isodistances, one side of the
|
|
square grid, the total number of points will be res*res. Increase res to obtain more detailed isodistances.
|
|
- _fill\_holes_ is also used with a threshold of `r threshold` km^2.
|
|
- _st\_intersection_ is also used on sf objects (simple features?)
|
|
|
|
## Calculate Routes
|
|
|
|
```{r routes, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
routes <- list(NULL)
|
|
school_focus_location <- WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% select(LAT, LON)
|
|
for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
|
query <- paste0(
|
|
brouter_url,
|
|
"?lonlats=",
|
|
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
|
|
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
|
|
school_focus_location$LON, ",", school_focus_location$LAT,
|
|
"&profile=", brouter_profile,
|
|
"&alternativeidx=0&format=geojson"
|
|
)
|
|
response <- GET(query)
|
|
route_run <- st_read(content <- content(response, as = "text"), quiet = TRUE)
|
|
route_run[["student_number"]] <- i
|
|
routes[[i]] <- route_run
|
|
|
|
|
|
message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
|
}
|
|
|
|
routes <- st_transform(bind_rows(routes), crs = 4326)
|
|
```
|
|
|
|
Notes:
|
|
- this queries the brouter server to get routes
|
|
|
|
|
|
## Combine routes with Bike LTS
|
|
```{r ltscount, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
|
|
# Count the routes that intersect or overlap with each segment of the bike_tls network.
|
|
# The intersections have a buffer of 20m
|
|
bike_lts_buffer <- st_buffer(st_intersection(bike_lts, cycle_boundary_poly), 20)
|
|
|
|
bike_lts_buffer["student_use"] <- unlist(lapply(st_intersects(bike_lts_buffer, routes), length))
|
|
|
|
bike_lts <- left_join(bike_lts, as.data.frame(bike_lts_buffer %>% select(OBJECTID, student_use)), by = "OBJECTID")
|
|
```
|
|
|
|
Notes: for each segment in bike_lts, this counts how many student's calculated routes intersect with it (within a 20 m buffer)
|
|
|
|
```{r routeslts, eval = FALSE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
getLTSForRoute <- function(i) {
|
|
|
|
# Filter the routes for the current student number
|
|
current_route <- routes %>% filter(student_number == i)
|
|
|
|
# Find intersecting OBJECTIDs
|
|
intersecting_ids <- relevant_buffer$OBJECTID[lengths(st_intersects(relevant_buffer, current_route)) > 0]
|
|
|
|
# Filter relevant segments to calculate max and average lts
|
|
relevant_segments <- bike_lts_buffer %>% filter(OBJECTID %in% intersecting_ids)
|
|
|
|
# find all the segments of relevant_buffer that the current route passes through
|
|
current_route_lts_intersection <- st_intersection(current_route, relevant_segments)
|
|
|
|
# calculate segment length in meters
|
|
current_route_lts_intersection$"segment_length" <- as.double(st_length(current_route_lts_intersection))
|
|
|
|
# Return the result as a data frame
|
|
result <- data.frame(
|
|
student_number = i
|
|
, lts_max = max(current_route_lts_intersection$LTS_F)
|
|
, lts_average = weighted.mean(current_route_lts_intersection$LTS_F, current_route_lts_intersection$segment_length)
|
|
, lts_1_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 1) %>% pull(LTS_F))
|
|
, lts_2_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 2) %>% pull(LTS_F))
|
|
, lts_3_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 3) %>% pull(LTS_F))
|
|
, lts_4_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 4) %>% pull(LTS_F))
|
|
, route = as.data.frame(current_route_lts_intersection)
|
|
)
|
|
|
|
# Optional message for debugging/progress
|
|
message(paste0("done - ", i))
|
|
|
|
return(result)
|
|
}
|
|
|
|
# Start with routes_lts as a NULL list
|
|
routes_lts <- list(NULL)
|
|
|
|
# Pre-filter the bike_lts_buffer for relevant student use
|
|
relevant_buffer <- bike_lts_buffer %>% filter(student_use > 0)
|
|
|
|
routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
|
getLTSForRoute)
|
|
|
|
system.time(routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
|
getLTSForRoute))
|
|
|
|
routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
|
getLTSForRoute,
|
|
mc.cores = detectCores() / 2,
|
|
mc.cleanup = TRUE,
|
|
mc.preschedule = TRUE,
|
|
mc.silent = FALSE)
|
|
|
|
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
|
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
|
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
|
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
|
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
|
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
|
# }
|
|
|
|
routes_lts <- bind_rows(routes_lts)
|
|
|
|
ggmap(basemap) + geom_sf(data = routes_lts, inherit.aes = FALSE, aes(color = route.lts, geometry = routes_lts$route.geometry))
|
|
|
|
addresses_near <- left_join(addresses_near, routes_lts, join_by("number"=="student_number"))
|
|
```
|
|
|
|
Notes: for each student's route, this finds which bike_lts segment it intersects with and calculates a max and an average level of traffic stress (LTS). This takes a while, so a parallelized it. There's probably a more efficient way to do this calculation.
|
|
|
|
# Make Maps
|
|
|
|
|
|
## Load school and Bike Fed logo
|
|
```{r logos, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# load logo
|
|
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
|
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
|
|
```
|
|
|
|
## Set boundaries and get basemap
|
|
```{r basemap, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
|
|
bbox <- st_bbox(st_buffer(cycle_boundary_poly, dist = 500))
|
|
bbox <- c(left = as.double(bbox[1]),
|
|
bottom = as.double(bbox[2]),
|
|
right = as.double(bbox[3]),
|
|
top = as.double(bbox[4]))
|
|
|
|
#get basemap
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
|
|
```
|
|
|
|
## Generate map of addresses
|
|
```{r mapaddresses, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Student homes at ",
|
|
school_focus %>% pull(name)),
|
|
x = NULL,
|
|
y = NULL,
|
|
color = NULL,
|
|
fill = "How many students live there") +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_hex(data = addresses %>% extract(geometry, into = c('Lat', 'Lon'), '\\((.*),(.*)\\)', conv = T),
|
|
aes(x = Lat,
|
|
y = Lon),
|
|
alpha = 0.7) +
|
|
scale_fill_distiller(palette = "YlOrRd", direction = "reverse") +
|
|
geom_sf(data = cycle_boundary_poly,
|
|
inherit.aes = FALSE,
|
|
aes(color = paste0(radius, " mile cycling boundary")),
|
|
fill = NA,
|
|
linewidth = 1) +
|
|
scale_color_manual(values = "blue", name = NULL) +
|
|
new_scale_color() +
|
|
annotation_raster(school_symbol,
|
|
# Position adjustments here using plot_box$max/min/range
|
|
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
|
|
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
|
|
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
|
|
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
|
|
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
|
inherit.aes = FALSE,
|
|
mapping = aes(label = school_focus %>% pull(name)),
|
|
nudge_y = 0.0015,
|
|
label.size = 0.04,
|
|
size = 2)
|
|
ggsave(file = paste0("figures/",
|
|
school_focus %>% pull(name),
|
|
" Addresses_cycling.pdf"),
|
|
title = paste0(school_focus %>% pull(name), " Addresses"),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
```
|
|
|
|
## Generate map of routes
|
|
```{r maproutes, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# generate map
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Cycling routes for students at ",
|
|
school_focus %>% pull(name)),
|
|
subtitle = paste0("only showing routes within the ", radius, " mile cycling boundary"),
|
|
x = NULL,
|
|
y = NULL,
|
|
color = NULL,
|
|
linewidth = "Potential student cyclists") +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = cycle_boundary_poly,
|
|
inherit.aes = FALSE,
|
|
aes(color = paste0(radius, " mile cycling boundary")),
|
|
fill = NA,
|
|
linewidth = 1) +
|
|
scale_color_manual(values = "blue", name = NULL) +
|
|
new_scale_color() +
|
|
geom_sf(data = bike_lts %>% filter(!is.na(student_use), student_use > 3),
|
|
inherit.aes = FALSE,
|
|
aes(linewidth = student_use),
|
|
color = "mediumvioletred",
|
|
fill = NA) +
|
|
scale_linewidth_continuous(range = c(0, 3)) +
|
|
annotation_raster(school_symbol,
|
|
# Position adjustments here using plot_box$max/min/range
|
|
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
|
|
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
|
|
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
|
|
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
|
|
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
|
inherit.aes = FALSE,
|
|
mapping = aes(label = school_focus %>% pull(name)),
|
|
nudge_y = 0.0015,
|
|
label.size = 0.04,
|
|
size = 2)
|
|
|
|
ggsave(file = paste0("figures/",
|
|
school_focus %>% pull(name),
|
|
" Routes_cycling.pdf"),
|
|
title = paste0(school_focus %>% pull(name), " Cycling Routes"),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
```
|
|
|
|
## Generate map of routes with LTS
|
|
```{r maprouteslts, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# generate map
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Cycling routes for students at ",
|
|
school_focus %>% pull(name)),
|
|
subtitle = "only showing routes within the cycling boundary",
|
|
x = NULL,
|
|
y = NULL,
|
|
color = NULL,
|
|
linewidth = "Potential student cyclists") +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = cycle_boundary_poly,
|
|
inherit.aes = FALSE,
|
|
aes(color = paste0(radius, " mile cycling boundary")),
|
|
fill = NA,
|
|
linewidth = 1) +
|
|
scale_color_manual(values = "blue", name = NULL) +
|
|
new_scale_color() +
|
|
geom_sf(data = bike_lts %>% filter(!is.na(student_use), student_use > 0),
|
|
inherit.aes = FALSE,
|
|
aes(color = lts,
|
|
linewidth = student_use)) +
|
|
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
|
|
scale_linewidth_continuous(range = c(0, 3)) +
|
|
annotation_raster(school_symbol,
|
|
# Position adjustments here using plot_box$max/min/range
|
|
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
|
|
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
|
|
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
|
|
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
|
|
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
|
inherit.aes = FALSE,
|
|
mapping = aes(label = school_focus %>% pull(name)),
|
|
nudge_y = 0.0015,
|
|
label.size = 0.04,
|
|
size = 2)
|
|
|
|
ggsave(file = paste0("figures/",
|
|
school_focus %>% pull(name),
|
|
" Routes - Traffic Stress_cycling.pdf"),
|
|
title = paste0(school_focus %>% pull(name), " Cycling Routes - Traffic Stress"),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
|
|
```
|
|
|
|
## Generate map of addresses with LTS
|
|
```{r mapaddresseslts, eval = FALSE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
# generate map
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Level of Traffic stress for biking for students at ",
|
|
school_focus %>% pull(name)),
|
|
subtitle = "only showing routes within the cycling boundary",
|
|
x = NULL,
|
|
y = NULL,
|
|
color = "Average Bike Level of Traffic stress for route to school") +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = cycle_boundary_poly,
|
|
inherit.aes = FALSE,
|
|
aes(color = paste0(radius, " mile cycling boundary")),
|
|
fill = NA,
|
|
linewidth = 1) +
|
|
scale_color_manual(values = "blue", name = NULL) +
|
|
new_scale_color() +
|
|
geom_sf(data = addresses_near,
|
|
inherit.aes = FALSE,
|
|
aes(color = lts_average)) +
|
|
scale_color_gradientn(colors = bike_lts_scale$color, name = "Average Bike Level of Traffic Stress\nfor route from that address", limits = c(1,4)) +
|
|
annotation_raster(school_symbol,
|
|
# Position adjustments here using plot_box$max/min/range
|
|
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
|
|
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
|
|
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
|
|
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
|
|
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
|
inherit.aes = FALSE,
|
|
mapping = aes(label = school_focus %>% pull(name)),
|
|
nudge_y = 0.0015,
|
|
label.size = 0.04,
|
|
size = 2)
|
|
|
|
ggsave(file = paste0("figures/",
|
|
school_focus %>% pull(name),
|
|
" Addresses - Traffic Stress_cycling.pdf"),
|
|
title = paste0(school_focus %>% pull(name), " Student Addresses - Cycling Traffic Stress"),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
|
|
```
|
|
|
|
# Appendix
|
|
|
|
```{r chunklast, eval = TRUE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
|
date()
|
|
sessionInfo()
|
|
```
|