Added new analysis: calculate the maximum and average lts for the route for each address and plot them on the map of addresses. This analysis takes a while, so I parallelized it. I also set eval=FALSE because it takes so long.
This commit is contained in:
parent
338e608d92
commit
7e6eb9c45b
@ -28,6 +28,7 @@ library(ggnewscale)
|
|||||||
library(rsvg)
|
library(rsvg)
|
||||||
library(httr)
|
library(httr)
|
||||||
library(jsonlite)
|
library(jsonlite)
|
||||||
|
library(parallel)
|
||||||
fig.height <- 6
|
fig.height <- 6
|
||||||
set.seed(1)
|
set.seed(1)
|
||||||
```
|
```
|
||||||
@ -176,14 +177,37 @@ bike_lts <- left_join(bike_lts, as.data.frame(bike_lts_buffer %>% select(OBJECTI
|
|||||||
Notes: for each segment in bike_lts, this counts how many student's calculated routes intersect with it (within a 20 m buffer)
|
Notes: for each segment in bike_lts, this counts how many student's calculated routes intersect with it (within a 20 m buffer)
|
||||||
|
|
||||||
```{r routeslts, eval = FALSE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
```{r routeslts, eval = FALSE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||||
routes_lts <-list(NULL)
|
getLTSForRoute <- function(i) {
|
||||||
for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
lts_segments <- (bike_lts_buffer %>% filter(student_use > 0))$OBJECTID[st_intersects(bike_lts_buffer %>% filter(student_use > 0), routes %>% filter(student_number == i), sparse = FALSE)]
|
||||||
lts_segments <- st_intersects(routes %>% filter(student_number == i), bike_lts_buffer)
|
lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||||
lts_max <- max(bike_lts_buffer %>% filter(OBJECTID.x ))
|
lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||||
routes_lts[[i]] <- routes_lts_run
|
# routes_lts[[as.character(i)]] <- data.frame("student_number" = c(as.character(i)), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||||
|
return(data.frame("student_number" = i, "lts_max" = lts_max, "lts_average" = lts_average))
|
||||||
message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
routes_lts <- list(NULL)
|
||||||
|
# routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||||
|
# getLTSForRoute)
|
||||||
|
|
||||||
|
routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
||||||
|
getLTSForRoute,
|
||||||
|
mc.cores = detectCores() / 2,
|
||||||
|
mc.cleanup = TRUE,
|
||||||
|
mc.preschedule = TRUE,
|
||||||
|
mc.silent = FALSE)
|
||||||
|
|
||||||
|
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||||
|
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
||||||
|
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||||
|
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||||
|
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||||
|
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||||
|
# }
|
||||||
|
|
||||||
routes_lts <- bind_rows(routes_lts)
|
routes_lts <- bind_rows(routes_lts)
|
||||||
|
|
||||||
|
addresses_near <- left_join(addresses_near, routes_lts, join_by("number"=="student_number"))
|
||||||
```
|
```
|
||||||
|
|
||||||
Notes: for each student's route, this finds which bike_lts segment it intersects with and calculates a max and an average
|
Notes: for each student's route, this finds which bike_lts segment it intersects with and calculates a max and an average
|
||||||
@ -362,6 +386,55 @@ ggsave(file = paste0("figures/",
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Generate map of addresses with LTS
|
||||||
|
```{r mapaddresseslts, eval = FALSE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||||
|
# generate map
|
||||||
|
ggmap(basemap) +
|
||||||
|
labs(title = paste0("Level of Traffic stress for biking for students at ",
|
||||||
|
school_focus %>% pull(name)),
|
||||||
|
subtitle = "only showing routes within the cycling boundary",
|
||||||
|
x = NULL,
|
||||||
|
y = NULL,
|
||||||
|
color = "Average Bike Level of Traffic stress for route to school") +
|
||||||
|
theme(axis.text=element_blank(),
|
||||||
|
axis.ticks=element_blank(),
|
||||||
|
plot.caption = element_text(color = "grey")) +
|
||||||
|
geom_sf(data = cycle_boundary_poly,
|
||||||
|
inherit.aes = FALSE,
|
||||||
|
aes(color = paste0(radius, " mile cycling boundary")),
|
||||||
|
fill = NA,
|
||||||
|
linewidth = 1) +
|
||||||
|
scale_color_manual(values = "blue", name = NULL) +
|
||||||
|
new_scale_color() +
|
||||||
|
geom_sf(data = addresses_near,
|
||||||
|
inherit.aes = FALSE,
|
||||||
|
aes(color = lts_average)) +
|
||||||
|
scale_color_gradientn(colors = bike_lts_scale$color, name = "Average Bike Level of Traffic Stress\nfor route from that address", limits = c(1,4)) +
|
||||||
|
annotation_raster(school_symbol,
|
||||||
|
# Position adjustments here using plot_box$max/min/range
|
||||||
|
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
|
||||||
|
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
|
||||||
|
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
|
||||||
|
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
|
||||||
|
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
|
||||||
|
inherit.aes = FALSE,
|
||||||
|
mapping = aes(label = school_focus %>% pull(name)),
|
||||||
|
nudge_y = 0.0015,
|
||||||
|
label.size = 0.04,
|
||||||
|
size = 2)
|
||||||
|
|
||||||
|
ggsave(file = paste0("figures/",
|
||||||
|
school_focus %>% pull(name),
|
||||||
|
" Addresses - Traffic Stress_cycling.pdf"),
|
||||||
|
title = paste0(school_focus %>% pull(name), " Cycling Routes - Traffic Stress"),
|
||||||
|
device = pdf,
|
||||||
|
height = 8.5,
|
||||||
|
width = 11,
|
||||||
|
units = "in",
|
||||||
|
create.dir = TRUE)
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
# Appendix
|
# Appendix
|
||||||
|
|
||||||
```{r chunklast, eval = TRUE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
```{r chunklast, eval = TRUE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user