Merge pull request #16 from syounkin/sgy
Created an archive directory create R/function.R organize cycle_route_analysis_brouter.Rmd
This commit is contained in:
commit
42c7df44fe
2
.gitignore
vendored
2
.gitignore
vendored
@ -15,8 +15,8 @@ data
|
||||
data-bkup/
|
||||
data-bkup
|
||||
*.R
|
||||
!R/functions.R
|
||||
*.bak
|
||||
archive/
|
||||
trash/
|
||||
api_key
|
||||
R/route_analysis.html
|
||||
|
4
Makefile
4
Makefile
@ -29,10 +29,10 @@ brouter-container: ./docker/brouter/docker-compose.yml
|
||||
cd ./docker/brouter; docker compose up -d
|
||||
|
||||
brouter-data:
|
||||
cd ./docker/brouter/; rm -rf ./brouter; git clone https://github.com/abrensch/brouter.git
|
||||
cd ./docker/brouter/; rm -rf ./brouter-bkup/; mv -v ./brouter/ ./brouter-bkup/; git clone https://github.com/abrensch/brouter.git
|
||||
cd ./docker/brouter/; wget -i segments.csv -P ./brouter/misc/segments4/
|
||||
cd ./docker/brouter/; cp safety.brf ./brouter/misc/profiles2/safety.brf
|
||||
cd ./docker/brouter/; rm -rf ./brouter-web; git clone https://github.com/nrenner/brouter-web.git
|
||||
cd ./docker/brouter/; rm -rf ./brouter-web-bkup/; mv -v ./brouter-web/ ./brouter-web-bkup/; git clone https://github.com/nrenner/brouter-web.git
|
||||
cd ./docker/brouter/brouter-web; cp keys.template.js keys.js;
|
||||
cd ./docker/brouter/brouter-web; cp config.template.js config.js
|
||||
cd ./docker/brouter; docker compose build
|
||||
|
34
R/functions.R
Normal file
34
R/functions.R
Normal file
@ -0,0 +1,34 @@
|
||||
getLTSForRoute <- function(i) {
|
||||
|
||||
# Filter the routes for the current student number
|
||||
current_route <- routes %>% filter(student_number == i)
|
||||
|
||||
# Find intersecting OBJECTIDs
|
||||
intersecting_ids <- relevant_buffer$OBJECTID[lengths(st_intersects(relevant_buffer, current_route)) > 0]
|
||||
|
||||
# Filter relevant segments to calculate max and average lts
|
||||
relevant_segments <- bike_lts_buffer %>% filter(OBJECTID %in% intersecting_ids)
|
||||
|
||||
# find all the segments of relevant_buffer that the current route passes through
|
||||
current_route_lts_intersection <- st_intersection(current_route, relevant_segments)
|
||||
|
||||
# calculate segment length in meters
|
||||
current_route_lts_intersection$"segment_length" <- as.double(st_length(current_route_lts_intersection))
|
||||
|
||||
# Return the result as a list
|
||||
result <- list(
|
||||
student_number = i
|
||||
, lts_max = max(current_route_lts_intersection$LTS_F)
|
||||
, lts_average = weighted.mean(current_route_lts_intersection$LTS_F, current_route_lts_intersection$segment_length)
|
||||
, lts_1_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 1) %>% pull(LTS_F))
|
||||
, lts_2_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 2) %>% pull(LTS_F))
|
||||
, lts_3_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 3) %>% pull(LTS_F))
|
||||
, lts_4_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 4) %>% pull(LTS_F))
|
||||
, route = as.data.frame(current_route_lts_intersection)
|
||||
)
|
||||
|
||||
# Message for progress
|
||||
message(paste0("done - ", i))
|
||||
|
||||
return(result)
|
||||
}
|
@ -16,6 +16,7 @@ editor_options:
|
||||
## Libraries
|
||||
|
||||
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
#foo
|
||||
date()
|
||||
rm(list=ls())
|
||||
library(tidyverse)
|
||||
@ -328,6 +329,8 @@ ggsave(file = paste0("figures/",
|
||||
|
||||
# Appendix
|
||||
|
||||
This script has been moved to ./archive/.
|
||||
|
||||
```{r chunklast, eval = TRUE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
||||
date()
|
||||
sessionInfo()
|
@ -31,6 +31,9 @@ library(jsonlite)
|
||||
library(parallel)
|
||||
fig.height <- 6
|
||||
set.seed(1)
|
||||
runTLS <- TRUE
|
||||
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
||||
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
|
||||
```
|
||||
|
||||
## School Location Data
|
||||
@ -138,10 +141,10 @@ routes <- list(NULL)
|
||||
school_focus_location <- WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% select(LAT, LON)
|
||||
for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
query <- paste0(
|
||||
brouter_url,
|
||||
brouter_url,
|
||||
"?lonlats=",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
|
||||
school_focus_location$LON, ",", school_focus_location$LAT,
|
||||
"&profile=", brouter_profile,
|
||||
"&alternativeidx=0&format=geojson"
|
||||
@ -150,8 +153,8 @@ for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
route_run <- st_read(content <- content(response, as = "text"), quiet = TRUE)
|
||||
route_run[["student_number"]] <- i
|
||||
routes[[i]] <- route_run
|
||||
|
||||
|
||||
|
||||
|
||||
message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
}
|
||||
|
||||
@ -173,6 +176,9 @@ bbox <- c(left = as.double(bbox[1]),
|
||||
#get basemap
|
||||
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
|
||||
```
|
||||
Notes:
|
||||
- This chunk retrieves the base map from Stadia Maps (API key required)
|
||||
|
||||
|
||||
## Combine routes with Bike LTS
|
||||
```{r ltscount, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
@ -186,55 +192,20 @@ bike_lts_buffer["student_use"] <- unlist(lapply(st_intersects(bike_lts_buffer, r
|
||||
bike_lts <- left_join(bike_lts, as.data.frame(bike_lts_buffer %>% select(OBJECTID, student_use)), by = "OBJECTID")
|
||||
```
|
||||
|
||||
Notes: for each segment in bike_lts, this counts how many student's calculated routes intersect with it (within a 10 m buffer)
|
||||
Notes:
|
||||
- for each segment in bike_lts, this counts how many student’s
|
||||
calculated routes intersect with it (within a 10 m buffer)
|
||||
|
||||
```{r routeslts, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
getLTSForRoute <- function(i) {
|
||||
|
||||
# Filter the routes for the current student number
|
||||
current_route <- routes %>% filter(student_number == i)
|
||||
|
||||
# Find intersecting OBJECTIDs
|
||||
intersecting_ids <- relevant_buffer$OBJECTID[lengths(st_intersects(relevant_buffer, current_route)) > 0]
|
||||
|
||||
# Filter relevant segments to calculate max and average lts
|
||||
relevant_segments <- bike_lts_buffer %>% filter(OBJECTID %in% intersecting_ids)
|
||||
|
||||
# find all the segments of relevant_buffer that the current route passes through
|
||||
current_route_lts_intersection <- st_intersection(current_route, relevant_segments)
|
||||
|
||||
# calculate segment length in meters
|
||||
current_route_lts_intersection$"segment_length" <- as.double(st_length(current_route_lts_intersection))
|
||||
|
||||
# Return the result as a list
|
||||
result <- list(
|
||||
student_number = i
|
||||
, lts_max = max(current_route_lts_intersection$LTS_F)
|
||||
, lts_average = weighted.mean(current_route_lts_intersection$LTS_F, current_route_lts_intersection$segment_length)
|
||||
, lts_1_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 1) %>% pull(LTS_F))
|
||||
, lts_2_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 2) %>% pull(LTS_F))
|
||||
, lts_3_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 3) %>% pull(LTS_F))
|
||||
, lts_4_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 4) %>% pull(LTS_F))
|
||||
, route = as.data.frame(current_route_lts_intersection)
|
||||
)
|
||||
|
||||
# Message for progress
|
||||
message(paste0("done - ", i))
|
||||
|
||||
return(result)
|
||||
}
|
||||
```{r functions, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
source("./R/functions.R")
|
||||
```
|
||||
|
||||
```{r routeslts, eval = runTLS, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# Start with routes_lts as a NULL list
|
||||
routes_lts <- list(NULL)
|
||||
|
||||
# Pre-filter the bike_lts_buffer for relevant student use
|
||||
relevant_buffer <- bike_lts_buffer %>% filter(student_use > 0)
|
||||
|
||||
# routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute)
|
||||
|
||||
# system.time(routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute))
|
||||
|
||||
routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
||||
getLTSForRoute,
|
||||
@ -243,27 +214,32 @@ routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
||||
mc.preschedule = TRUE,
|
||||
mc.silent = FALSE)
|
||||
|
||||
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
||||
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
# }
|
||||
|
||||
routes_lts <- bind_rows(routes_lts)
|
||||
```
|
||||
Notes:
|
||||
- for each student's route, this finds which bike_lts segment it
|
||||
intersects with and calculates a max and an average level of traffic
|
||||
stress (LTS). This takes a while, so a parallelized it. There's
|
||||
probably a more efficient way to do this calculation.
|
||||
- see ./R/functions.R for defintion of getLTSForRoute()
|
||||
|
||||
ggmap(basemap) +
|
||||
geom_sf(data = routes_lts %>% filter(student_number == 6), inherit.aes = FALSE,
|
||||
aes(color = route$lts,
|
||||
|
||||
# Make Maps
|
||||
|
||||
## Generate map with LTS data
|
||||
|
||||
```{r maplts, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
ggmap(basemap) +
|
||||
geom_sf(data = routes_lts %>% filter(student_number == 6), inherit.aes = FALSE,
|
||||
aes(color = route$lts,
|
||||
geometry = route$geometry),
|
||||
linewidth = 2) +
|
||||
linewidth = 2) +
|
||||
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress")
|
||||
|
||||
# Join the data with the addresses data
|
||||
addresses_near <- left_join(addresses_near,
|
||||
routes_lts %>%
|
||||
select(c("student_number", "lts_max", "lts_average", "lts_1_dist", "lts_2_dist", "lts_3_dist", "lts_4_dist")),
|
||||
addresses_near <- left_join(addresses_near,
|
||||
routes_lts %>%
|
||||
select(c("student_number", "lts_max", "lts_average", "lts_1_dist", "lts_2_dist", "lts_3_dist", "lts_4_dist")),
|
||||
join_by("number"=="student_number"),
|
||||
multiple = "any")
|
||||
|
||||
@ -271,18 +247,6 @@ addresses_near <- left_join(addresses_near,
|
||||
addresses_near <- addresses_near %>% mutate(lts_34_dist = lts_3_dist + lts_4_dist)
|
||||
```
|
||||
|
||||
Notes: for each student's route, this finds which bike_lts segment it intersects with and calculates a max and an average level of traffic stress (LTS). This takes a while, so a parallelized it. There's probably a more efficient way to do this calculation.
|
||||
|
||||
# Make Maps
|
||||
|
||||
|
||||
## Load school and Bike Fed logo
|
||||
```{r logos, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# load logo
|
||||
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
||||
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
|
||||
```
|
||||
|
||||
## Generate map of addresses
|
||||
```{r mapaddresses, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
|
||||
@ -382,8 +346,8 @@ ggsave(file = paste0("figures/",
|
||||
create.dir = TRUE)
|
||||
```
|
||||
|
||||
## Generate map of routes with LTS
|
||||
```{r maprouteslts, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
## Generate map of routes with LTS (1)
|
||||
```{r maprouteslts, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# generate map
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Cycling routes for students at ",
|
||||
@ -434,8 +398,9 @@ ggsave(file = paste0("figures/",
|
||||
|
||||
```
|
||||
|
||||
## Generate map of routes with LTS
|
||||
```{r mapaddresseslts, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
## Generate map of routes with LTS (2)
|
||||
|
||||
```{r mapaddresseslts, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# generate map
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Level of Traffic stress for biking for students at ",
|
||||
@ -493,3 +458,22 @@ ggsave(file = paste0("figures/",
|
||||
date()
|
||||
sessionInfo()
|
||||
```
|
||||
|
||||
# Archive
|
||||
|
||||
```{r archive1, eval = FALSE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
||||
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
||||
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
# }
|
||||
|
||||
# routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute)
|
||||
|
||||
# system.time(routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute))
|
||||
|
||||
```
|
||||
|
1
docker/.gitignore
vendored
Normal file
1
docker/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
archive/
|
Loading…
x
Reference in New Issue
Block a user