Organized cycle_route_analysis_brouter.Rmd
Added some notes. Divided up some chunks.
This commit is contained in:
parent
34fa374de5
commit
41d87517d8
@ -139,10 +139,10 @@ routes <- list(NULL)
|
||||
school_focus_location <- WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% select(LAT, LON)
|
||||
for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
query <- paste0(
|
||||
brouter_url,
|
||||
brouter_url,
|
||||
"?lonlats=",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
|
||||
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
|
||||
school_focus_location$LON, ",", school_focus_location$LAT,
|
||||
"&profile=", brouter_profile,
|
||||
"&alternativeidx=0&format=geojson"
|
||||
@ -151,8 +151,8 @@ for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
route_run <- st_read(content <- content(response, as = "text"), quiet = TRUE)
|
||||
route_run[["student_number"]] <- i
|
||||
routes[[i]] <- route_run
|
||||
|
||||
|
||||
|
||||
|
||||
message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
}
|
||||
|
||||
@ -174,6 +174,9 @@ bbox <- c(left = as.double(bbox[1]),
|
||||
#get basemap
|
||||
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
|
||||
```
|
||||
Notes:
|
||||
- This chunk retrieves the base map from Stadia Maps (API key required)
|
||||
|
||||
|
||||
## Combine routes with Bike LTS
|
||||
```{r ltscount, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
@ -187,55 +190,20 @@ bike_lts_buffer["student_use"] <- unlist(lapply(st_intersects(bike_lts_buffer, r
|
||||
bike_lts <- left_join(bike_lts, as.data.frame(bike_lts_buffer %>% select(OBJECTID, student_use)), by = "OBJECTID")
|
||||
```
|
||||
|
||||
Notes: for each segment in bike_lts, this counts how many student’s calculated routes intersect with it (within a 10 m buffer)
|
||||
Notes:
|
||||
- for each segment in bike_lts, this counts how many student’s
|
||||
calculated routes intersect with it (within a 10 m buffer)
|
||||
|
||||
```{r functions, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
source("./R/functions.R")
|
||||
```
|
||||
|
||||
```{r routeslts, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
getLTSForRoute <- function(i) {
|
||||
|
||||
# Filter the routes for the current student number
|
||||
current_route <- routes %>% filter(student_number == i)
|
||||
|
||||
# Find intersecting OBJECTIDs
|
||||
intersecting_ids <- relevant_buffer$OBJECTID[lengths(st_intersects(relevant_buffer, current_route)) > 0]
|
||||
|
||||
# Filter relevant segments to calculate max and average lts
|
||||
relevant_segments <- bike_lts_buffer %>% filter(OBJECTID %in% intersecting_ids)
|
||||
|
||||
# find all the segments of relevant_buffer that the current route passes through
|
||||
current_route_lts_intersection <- st_intersection(current_route, relevant_segments)
|
||||
|
||||
# calculate segment length in meters
|
||||
current_route_lts_intersection$"segment_length" <- as.double(st_length(current_route_lts_intersection))
|
||||
|
||||
# Return the result as a list
|
||||
result <- list(
|
||||
student_number = i
|
||||
, lts_max = max(current_route_lts_intersection$LTS_F)
|
||||
, lts_average = weighted.mean(current_route_lts_intersection$LTS_F, current_route_lts_intersection$segment_length)
|
||||
, lts_1_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 1) %>% pull(LTS_F))
|
||||
, lts_2_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 2) %>% pull(LTS_F))
|
||||
, lts_3_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 3) %>% pull(LTS_F))
|
||||
, lts_4_dist = sum(current_route_lts_intersection %>% filter(LTS_F == 4) %>% pull(LTS_F))
|
||||
, route = as.data.frame(current_route_lts_intersection)
|
||||
)
|
||||
|
||||
# Message for progress
|
||||
message(paste0("done - ", i))
|
||||
|
||||
return(result)
|
||||
}
|
||||
|
||||
# Start with routes_lts as a NULL list
|
||||
routes_lts <- list(NULL)
|
||||
|
||||
# Pre-filter the bike_lts_buffer for relevant student use
|
||||
relevant_buffer <- bike_lts_buffer %>% filter(student_use > 0)
|
||||
|
||||
# routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute)
|
||||
|
||||
# system.time(routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute))
|
||||
|
||||
routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
||||
getLTSForRoute,
|
||||
@ -244,27 +212,27 @@ routes_lts <- mclapply(addresses_near %>% arrange(number) %>% pull(number),
|
||||
mc.preschedule = TRUE,
|
||||
mc.silent = FALSE)
|
||||
|
||||
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
||||
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
# }
|
||||
|
||||
routes_lts <- bind_rows(routes_lts)
|
||||
```
|
||||
Notes:
|
||||
- for each student's route, this finds which bike_lts segment it
|
||||
intersects with and calculates a max and an average level of traffic
|
||||
stress (LTS). This takes a while, so a parallelized it. There's
|
||||
probably a more efficient way to do this calculation.
|
||||
- see ./R/functions.R for defintion of getLTSForRoute()
|
||||
|
||||
ggmap(basemap) +
|
||||
geom_sf(data = routes_lts %>% filter(student_number == 6), inherit.aes = FALSE,
|
||||
aes(color = route$lts,
|
||||
```{r maplts, eval = runTLS, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
ggmap(basemap) +
|
||||
geom_sf(data = routes_lts %>% filter(student_number == 6), inherit.aes = FALSE,
|
||||
aes(color = route$lts,
|
||||
geometry = route$geometry),
|
||||
linewidth = 2) +
|
||||
linewidth = 2) +
|
||||
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress")
|
||||
|
||||
# Join the data with the addresses data
|
||||
addresses_near <- left_join(addresses_near,
|
||||
routes_lts %>%
|
||||
select(c("student_number", "lts_max", "lts_average", "lts_1_dist", "lts_2_dist", "lts_3_dist", "lts_4_dist")),
|
||||
addresses_near <- left_join(addresses_near,
|
||||
routes_lts %>%
|
||||
select(c("student_number", "lts_max", "lts_average", "lts_1_dist", "lts_2_dist", "lts_3_dist", "lts_4_dist")),
|
||||
join_by("number"=="student_number"),
|
||||
multiple = "any")
|
||||
|
||||
@ -272,8 +240,6 @@ addresses_near <- left_join(addresses_near,
|
||||
addresses_near <- addresses_near %>% mutate(lts_34_dist = lts_3_dist + lts_4_dist)
|
||||
```
|
||||
|
||||
Notes: for each student's route, this finds which bike_lts segment it intersects with and calculates a max and an average level of traffic stress (LTS). This takes a while, so a parallelized it. There's probably a more efficient way to do this calculation.
|
||||
|
||||
# Make Maps
|
||||
|
||||
|
||||
@ -494,3 +460,22 @@ ggsave(file = paste0("figures/",
|
||||
date()
|
||||
sessionInfo()
|
||||
```
|
||||
|
||||
# Archive
|
||||
|
||||
```{r archive1, eval = FALSE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
|
||||
# for(i in addresses_near %>% arrange(number) %>% pull(number)) {
|
||||
# lts_segments <- bike_lts_buffer$OBJECTID[st_intersects(bike_lts_buffer, routes %>% filter(student_number == i), sparse = FALSE)]
|
||||
# lts_max <- max(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# lts_average <- mean(bike_lts_buffer %>% filter(OBJECTID %in% lts_segments) %>% pull(LTS_F), na.rm = TRUE)
|
||||
# routes_lts[[i]] <- data.frame("student_number" = c(i), "lts_max" = c(lts_max), "lts_average" = c(lts_average))
|
||||
# message(paste0("done - ", i, " of ", max(addresses_near$number)))
|
||||
# }
|
||||
|
||||
# routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute)
|
||||
|
||||
# system.time(routes_lts <- lapply(head(addresses_near %>% arrange(number) %>% pull(number)),
|
||||
# getLTSForRoute))
|
||||
|
||||
```
|
||||
|
Loading…
x
Reference in New Issue
Block a user