Merge branch 'main' into sgy

This commit is contained in:
syounkin 2024-11-04 18:52:16 -06:00
commit 2e1c211915
2 changed files with 357 additions and 2 deletions

View File

@ -125,11 +125,11 @@ square grid, the total number of points will be res*res. Increase res to obtain
```{r routes, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} ```{r routes, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
routes <- list(NULL) routes <- list(NULL)
for(i in addresses_near$number) { for(i in addresses_near %>% arrange(number) %>% pull(number)) {
routes[[i]] <- osrmRoute( routes[[i]] <- osrmRoute(
src = addresses_near %>% filter(number == i), src = addresses_near %>% filter(number == i),
dst = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE)) dst = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE))
message(paste0("done - ", i, "of", max(addresses_near$number))) message(paste0("done - ", i, " of ", max(addresses_near$number)))
} }
routes <- bind_rows(routes) routes <- bind_rows(routes)

View File

@ -0,0 +1,355 @@
---
title: "East High Cycling Routes"
output:
html_document:
toc: true
toc_depth: 5
toc_float:
collapsed: false
smooth_scroll: true
editor_options:
chunk_output_type: console
---
# Input Data & Configuration
## Libraries
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
date()
rm(list=ls())
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(magick)
library(ggnewscale)
library(rsvg)
library(httr)
library(jsonlite)
fig.height <- 6
set.seed(1)
```
## School Location Data
```{r gpkg, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
WI_schools <- st_transform(st_read(dsn = "data/Schools/Wisconsin_Public_Schools_-5986231931870160084.gpkg"), crs = 4326)
WI_schools <- WI_schools %>% mutate(geom = SHAPE)
```
## Addresses Data
```{r addresses, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
addresses <- read_csv(file="data/addresses/Addresses_Students_EastHS_2024_GeocodeResults.csv") %>%
filter(lat > 0) %>%
st_as_sf(coords=c("lon","lat"), crs=4326)
```
(Remember that x = lon and y = lat.)
## Bike Level of Traffic Stress (LTS)
```{r bikelts, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
bike_lts <- st_read("data/bike_lts/bike_lts_DANE.geojson")
# make lts attribute a factor
bike_lts[["lts"]] <- as.factor(bike_lts$LTS_F)
# remove segments with an LTS value of 9
bike_lts <- bike_lts %>% filter(lts != 9)
# set color scale
bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
color = c("#1a9641",
"#a6d96a",
"#fdae61",
"#d7191c",
"#d7191c"))
```
# External sources configurations
## Open Source Routing Machine (OSRM)
```{r osrm, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
options(osrm.server = "http://127.0.0.1:5001/")
options(osrm.profile = "bike")
```
## Brouter options
```{r brouter, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# Prepare the URL query
url <- "http://127.0.0.1:17777/brouter"
profile <- "trekking" # choose appropriate profile
```
## Stadia Maps API Key
```{r stadiamaps, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
```
# Analysis
```{r analysisPreamble, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
radius <- 3 # miles
levels <- c(1)
res <- 100
threshold <- 1
```
## Subset Addresses Within `r radius` Miles
```{r cycleBoundary, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
cycle_boundary_m <- radius*1609
school_focus <- data.frame(name = c("East High School"), NCES_CODE = c("550852000925"))
#school_focus <- data.frame(name = c("IMAP"), NCES_CODE = c("550008203085"))
cycle_boundary_poly <- fill_holes(st_make_valid(osrmIsodistance(
loc = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
# breaks = c(cycle_boundary_m),
breaks = cycle_boundary_m*levels,
res = res)
), units::set_units(threshold, km^2))
addresses_near <- st_intersection(addresses, cycle_boundary_poly)
```
Notes:
- _osrmIsoDistance_ is the primary function in the above chunk.
- This function computes areas that are reachable within a given road
distance from a point and returns the reachable regions as
polygons. These areas of equal travel distance are called isodistances.
- Input is a point represented as an sf object (extended
data.frame-like objects with a simple feature list column) could be
other classes, e.g., vector of coods, data.frame of lat tand
long. etc.
- Arguments to osrmIsodistances used here are breaks and res
- breaks: a numeric vector of break values to define isodistance areas, in meters.
- res: number of points used to compute isodistances, one side of the
square grid, the total number of points will be res*res. Increase res to obtain more detailed isodistances.
- _fill\_holes_ is also used with a threshold of `r threshold` km^2.
- _st\_intersection_ is also used on sf objects (simple features?)
## Calculate Routes
```{r routes, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
routes <- list(NULL)
school_focus_location <- WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% select(LAT, LON)
for(i in addresses_near %>% arrange(number) %>% pull(number)) {
query <- paste0(
url,
"?lonlats=",
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][1], ",",
(addresses_near %>% filter(number == i) %>% pull(point) %>% str_split(., ","))[[1]][2], "|",
school_focus_location$LON, ",", school_focus_location$LAT,
"&profile=", profile,
"&alternativeidx=0&format=geojson"
)
response <- GET(query)
routes[[i]] <- st_read(content <- content(response, as = "text"), quiet = TRUE)
message(paste0("done - ", i, " of ", max(addresses_near$number)))
}
routes <- bind_rows(routes)
```
Notes:
- _osrmRoute_ is the primary function used above.
## Combine routes with Bike LTS
```{r routeslts, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# Count the routes that intersect or overlap with each segment of the bike_tls network.
# The intersections have a buffer of 20m
bike_lts_buffer <- st_buffer(st_intersection(bike_lts, cycle_boundary_poly), 20)
bike_lts_buffer["student_use"] <- unlist(lapply(st_intersects(bike_lts_buffer, routes), length))
bike_lts <- st_join(bike_lts, bike_lts_buffer %>% select(OBJECTID, student_use))
```
Notes:
# Make Maps
## Load school and Bike Fed logo
```{r logos, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# load logo
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
```
## Set boundaries and get basemap
```{r basemap, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
bbox <- st_bbox(st_buffer(cycle_boundary_poly, dist = 500))
bbox <- c(left = as.double(bbox[1]),
bottom = as.double(bbox[2]),
right = as.double(bbox[3]),
top = as.double(bbox[4]))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
```
## Generate map of addresses
```{r mapaddresses, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
ggmap(basemap) +
labs(title = paste0("Student homes at ",
school_focus %>% pull(name)),
x = NULL,
y = NULL,
color = NULL,
fill = "How many students live there") +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
geom_hex(data = addresses %>% extract(geometry, into = c('Lat', 'Lon'), '\\((.*),(.*)\\)', conv = T),
aes(x = Lat,
y = Lon),
alpha = 0.7) +
scale_fill_distiller(palette = "YlOrRd", direction = "reverse") +
geom_sf(data = cycle_boundary_poly,
inherit.aes = FALSE,
aes(color = paste0(radius, " mile cycling boundary")),
fill = NA,
linewidth = 1) +
scale_color_manual(values = "blue", name = NULL) +
new_scale_color() +
annotation_raster(school_symbol,
# Position adjustments here using plot_box$max/min/range
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
inherit.aes = FALSE,
mapping = aes(label = school_focus %>% pull(name)),
nudge_y = 0.0015,
label.size = 0.04,
size = 2)
ggsave(file = paste0("figures/",
school_focus %>% pull(name),
" Addresses_cycling.pdf"),
title = paste0(school_focus %>% pull(name), " Addresses"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
```
## Generate map of routes
```{r maproutes, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# generate map
ggmap(basemap) +
labs(title = paste0("Cycling routes for students at ",
school_focus %>% pull(name)),
subtitle = paste0("only showing routes within the ", radius, " mile cycling boundary"),
x = NULL,
y = NULL,
color = NULL,
linewidth = "Potential student cyclists") +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
geom_sf(data = cycle_boundary_poly,
inherit.aes = FALSE,
aes(color = paste0(radius, " mile cycling boundary")),
fill = NA,
linewidth = 1) +
scale_color_manual(values = "blue", name = NULL) +
new_scale_color() +
geom_sf(data = bike_lts %>% filter(!is.na(student_use), student_use > 3),
inherit.aes = FALSE,
aes(linewidth = student_use),
color = "mediumvioletred",
fill = NA) +
scale_linewidth_continuous(range = c(0, 3)) +
annotation_raster(school_symbol,
# Position adjustments here using plot_box$max/min/range
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
inherit.aes = FALSE,
mapping = aes(label = school_focus %>% pull(name)),
nudge_y = 0.0015,
label.size = 0.04,
size = 2)
ggsave(file = paste0("figures/",
school_focus %>% pull(name),
" Routes_cycling.pdf"),
title = paste0(school_focus %>% pull(name), " Cycling Routes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
```
## Generate map of routes with LTS
```{r maprouteslts, eval = TRUE, echo = FALSE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# generate map
ggmap(basemap) +
labs(title = paste0("Cycling routes for students at ",
school_focus %>% pull(name)),
subtitle = "only showing routes within the cycling boundary",
x = NULL,
y = NULL,
color = NULL,
linewidth = "Potential student cyclists") +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
geom_sf(data = cycle_boundary_poly,
inherit.aes = FALSE,
aes(color = paste0(radius, " mile cycling boundary")),
fill = NA,
linewidth = 1) +
scale_color_manual(values = "blue", name = NULL) +
new_scale_color() +
geom_sf(data = bike_lts %>% filter(!is.na(student_use), student_use > 0),
inherit.aes = FALSE,
aes(color = lts,
linewidth = student_use)) +
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
scale_linewidth_continuous(range = c(0, 3)) +
annotation_raster(school_symbol,
# Position adjustments here using plot_box$max/min/range
ymin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] - 0.001,
ymax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[2] + 0.001,
xmin = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] - 0.0015,
xmax = as.double((WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE) %>% pull(geom))[[1]])[1] + 0.0015) +
geom_sf_label(data = WI_schools %>% filter(NCES_CODE %in% school_focus$NCES_CODE),
inherit.aes = FALSE,
mapping = aes(label = school_focus %>% pull(name)),
nudge_y = 0.0015,
label.size = 0.04,
size = 2)
ggsave(file = paste0("figures/",
school_focus %>% pull(name),
" Routes - Traffic Stress_cycling.pdf"),
title = paste0(school_focus %>% pull(name), " Cycling Routes - Traffic Stress"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
```
# Appendix
```{r chunklast, eval = TRUE, echo = TRUE, results = "show", warning = TRUE, error = TRUE, message = TRUE}
date()
sessionInfo()
```