edits
This commit is contained in:
parent
f6fbdde273
commit
7d941e6dc6
512
.Rhistory
512
.Rhistory
@ -1,512 +0,0 @@
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry")
|
||||
bucket_feet <- 500
|
||||
lat_round <- bucket_feet/364481.35
|
||||
lon_round <- bucket_feet/267203.05
|
||||
metro_summary <- metro_data %>%
|
||||
left_join(routes_categorized, by = "pid") %>%
|
||||
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
||||
lon_bucket = round(lon / lon_round) * lon_round) %>%
|
||||
group_by(rt, des, pid, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd = median(spd, na.rm = TRUE),
|
||||
spd_calc = median(spd_calc, na.rm = TRUE),
|
||||
pdist = median(pdist),
|
||||
trip_count = length(unique(origtatripno)))
|
||||
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
||||
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
|
||||
metro_segments <- metro_summary %>%
|
||||
group_by(rt, pid) %>%
|
||||
arrange(pdist) %>%
|
||||
mutate(lat_bucket_lag = lag(lat_bucket),
|
||||
lon_bucket_lag = lag(lon_bucket)) %>%
|
||||
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
||||
mutate(
|
||||
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry")
|
||||
# get counts of routes
|
||||
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
||||
# make charts
|
||||
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_point() +
|
||||
geom_smooth() +
|
||||
facet_grid(paste0(rt, "-", des) ~ .)
|
||||
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
||||
bbox <- c(left = min(metro_data$lon),
|
||||
bottom = min(metro_data$lat),
|
||||
right = max(metro_data$lon),
|
||||
top = max(metro_data$lat))
|
||||
#get basemap
|
||||
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
||||
# A West
|
||||
quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
|
||||
for (route in unique(routes_categorized$name)){
|
||||
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(pid %in% route_focus),
|
||||
inherit.aes = FALSE,
|
||||
aes(color = spd_calc),
|
||||
linewidth = 1) +
|
||||
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
||||
ggsave(file = paste0("figures/",
|
||||
route,
|
||||
".pdf"),
|
||||
title = paste0("Metro Route Speed - ", route),
|
||||
device = pdf,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
}
|
||||
View(metro_data)
|
||||
View(metro_summary)
|
||||
metro_summary <- metro_data %>%
|
||||
left_join(routes_categorized, by = "pid") %>%
|
||||
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
||||
lon_bucket = round(lon / lon_round) * lon_round)
|
||||
View(metro_summary)
|
||||
metro_summary <- metro_data %>%
|
||||
left_join(routes_categorized, by = "pid") %>%
|
||||
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
||||
lon_bucket = round(lon / lon_round) * lon_round) %>%
|
||||
group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd = median(spd, na.rm = TRUE),
|
||||
spd_calc = median(spd_calc, na.rm = TRUE),
|
||||
pdist = median(pdist),
|
||||
trip_count = length(unique(origtatripno)))
|
||||
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
||||
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
|
||||
metro_segments <- metro_summary %>%
|
||||
group_by(rt, pid) %>%
|
||||
arrange(pdist) %>%
|
||||
mutate(lat_bucket_lag = lag(lat_bucket),
|
||||
lon_bucket_lag = lag(lon_bucket)) %>%
|
||||
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
||||
mutate(
|
||||
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry") %>%
|
||||
group_by(rt, name, lat_bucket, lon_bucket) %>%
|
||||
summarise(weighted.mean(spd_calc, trip_count))
|
||||
View(metro_segments)
|
||||
metro_segments <- metro_summary %>%
|
||||
group_by(rt, pid) %>%
|
||||
arrange(pdist) %>%
|
||||
mutate(lat_bucket_lag = lag(lat_bucket),
|
||||
lon_bucket_lag = lag(lon_bucket)) %>%
|
||||
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
||||
mutate(
|
||||
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry") %>%
|
||||
group_by(rt, name, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd_calc = weighted.mean(spd_calc, trip_count))
|
||||
View(metro_segments)
|
||||
for (route in unique(routes_categorized$name)){
|
||||
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(pid %in% route_focus),
|
||||
inherit.aes = FALSE,
|
||||
aes(color = spd_calc),
|
||||
linewidth = 1) +
|
||||
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
||||
ggsave(file = paste0("figures/",
|
||||
route,
|
||||
".pdf"),
|
||||
title = paste0("Metro Route Speed - ", route),
|
||||
device = pdf,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
}
|
||||
for (route in unique(routes_categorized$name)){
|
||||
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(name %in route),
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(name %in% route),
|
||||
inherit.aes = FALSE,
|
||||
aes(color = spd_calc),
|
||||
linewidth = 1) +
|
||||
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
||||
for (route in unique(routes_categorized$name)){
|
||||
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(name %in% route),
|
||||
inherit.aes = FALSE,
|
||||
aes(color = spd_calc),
|
||||
linewidth = 1) +
|
||||
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
||||
ggsave(file = paste0("figures/",
|
||||
route,
|
||||
".pdf"),
|
||||
title = paste0("Metro Route Speed - ", route),
|
||||
device = pdf,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
}
|
||||
# A West
|
||||
quantile(metro_segments %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
|
||||
quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
|
||||
metro_data <- metro_raw %>%
|
||||
mutate(time = with_tz(time, "America/Chicago"),
|
||||
spd = as.double(spd),
|
||||
pdist = as.double(pdist),
|
||||
lon = as.double(lon),
|
||||
lat = as.double(lat)) %>%
|
||||
group_by(pid, vid) %>%
|
||||
arrange(time) %>%
|
||||
mutate(pdist_lag = lag(pdist),
|
||||
time_lag = lag(time)) %>%
|
||||
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
|
||||
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
|
||||
left_join(routes_categorized, by = "pid")
|
||||
ggplot(data = metro_data %>% filter(name %in% route)) +
|
||||
geom_violin(aes(x = time,
|
||||
y = spd_calc))
|
||||
metro_data <- metro_raw %>%
|
||||
mutate(time = with_tz(time, "America/Chicago"),
|
||||
spd = as.double(spd),
|
||||
pdist = as.double(pdist),
|
||||
lon = as.double(lon),
|
||||
lat = as.double(lat)) %>%
|
||||
mutate(date = date(time)) %>%
|
||||
group_by(pid, vid) %>%
|
||||
arrange(time) %>%
|
||||
mutate(pdist_lag = lag(pdist),
|
||||
time_lag = lag(time)) %>%
|
||||
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
|
||||
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
|
||||
left_join(routes_categorized, by = "pid")
|
||||
ggplot(data = metro_data %>% filter(name %in% route)) +
|
||||
geom_violin(aes(x = time,
|
||||
y = spd_calc,
|
||||
group = date))
|
||||
ggplot(data = metro_data %>% filter(name %in% route)) +
|
||||
geom_violin(aes(x = date,
|
||||
y = spd_calc))
|
||||
ggplot(data = metro_data %>% filter(name %in% route)) +
|
||||
geom_boxplot(aes(x = date,
|
||||
y = spd_calc))
|
||||
library(tidyverse)
|
||||
library(influxdbclient)
|
||||
library(glue)
|
||||
library(ggmap)
|
||||
library(sf)
|
||||
# parameters needed to make connection to Database
|
||||
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
||||
org <- "e2581d54779b077f"
|
||||
bucket <- "madison-metro"
|
||||
days <- 1
|
||||
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
||||
token = token,
|
||||
org = org)
|
||||
#---
|
||||
# Fields you want to query
|
||||
fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
|
||||
# Creating an empty list to store results for each field
|
||||
results <- vector("list", length(fields))
|
||||
# Loop through each field, get data, and coerce types if needed
|
||||
for (i in seq_along(fields)) {
|
||||
field <- fields[i]
|
||||
query_string <- glue('from(bucket: "{bucket}") ',
|
||||
'|> range(start: -{days}d) ',
|
||||
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
||||
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
||||
data <- influx_connection$query(query_string)
|
||||
# Ensure the columns are coerced to consistent types
|
||||
# (Optionally add coercion based on your expected types)
|
||||
data <- bind_rows(data) %>%
|
||||
mutate(value = as.character(`_value`),
|
||||
field = `_field`) %>%
|
||||
select(time, rt, pid, vid, value, field)
|
||||
results[[i]] <- data
|
||||
}
|
||||
# Bind all results together
|
||||
metro_raw <- bind_rows(results)
|
||||
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
||||
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
||||
routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
|
||||
metro_data <- metro_raw %>%
|
||||
mutate(time = with_tz(time, "America/Chicago"),
|
||||
spd = as.double(spd),
|
||||
pdist = as.double(pdist),
|
||||
lon = as.double(lon),
|
||||
lat = as.double(lat)) %>%
|
||||
mutate(date = date(time)) %>%
|
||||
group_by(pid, vid) %>%
|
||||
arrange(time) %>%
|
||||
mutate(pdist_lag = lag(pdist),
|
||||
time_lag = lag(time)) %>%
|
||||
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
|
||||
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
|
||||
left_join(routes_categorized, by = "pid")
|
||||
bucket_feet <- 500
|
||||
lat_round <- bucket_feet/364481.35
|
||||
lon_round <- bucket_feet/267203.05
|
||||
metro_summary <- metro_data %>%
|
||||
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
||||
lon_bucket = round(lon / lon_round) * lon_round) %>%
|
||||
group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd = median(spd, na.rm = TRUE),
|
||||
spd_calc = median(spd_calc, na.rm = TRUE),
|
||||
pdist = median(pdist),
|
||||
trip_count = length(unique(origtatripno)))
|
||||
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
||||
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
|
||||
metro_segments <- metro_summary %>%
|
||||
group_by(rt, pid) %>%
|
||||
arrange(pdist) %>%
|
||||
mutate(lat_bucket_lag = lag(lat_bucket),
|
||||
lon_bucket_lag = lag(lon_bucket)) %>%
|
||||
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
||||
mutate(
|
||||
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry") %>%
|
||||
group_by(rt, name, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd_calc = weighted.mean(spd_calc, trip_count))
|
||||
# get counts of routes
|
||||
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
||||
# make charts
|
||||
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_point() +
|
||||
geom_smooth() +
|
||||
facet_grid(paste0(rt, "-", des) ~ .)
|
||||
# make charts
|
||||
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_point() +
|
||||
geom_smooth() +
|
||||
facet_grid(name ~ .)
|
||||
library(tidyverse)
|
||||
library(influxdbclient)
|
||||
library(glue)
|
||||
library(ggmap)
|
||||
library(sf)
|
||||
# parameters needed to make connection to Database
|
||||
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
||||
org <- "e2581d54779b077f"
|
||||
bucket <- "madison-metro"
|
||||
days <- 1
|
||||
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
||||
token = token,
|
||||
org = org)
|
||||
#---
|
||||
# Fields you want to query
|
||||
fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
|
||||
# Creating an empty list to store results for each field
|
||||
results <- vector("list", length(fields))
|
||||
# Loop through each field, get data, and coerce types if needed
|
||||
for (i in seq_along(fields)) {
|
||||
field <- fields[i]
|
||||
query_string <- glue('from(bucket: "{bucket}") ',
|
||||
'|> range(start: -{days}d) ',
|
||||
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
||||
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
||||
data <- influx_connection$query(query_string)
|
||||
# Ensure the columns are coerced to consistent types
|
||||
# (Optionally add coercion based on your expected types)
|
||||
data <- bind_rows(data) %>%
|
||||
mutate(value = as.character(`_value`),
|
||||
field = `_field`) %>%
|
||||
select(time, rt, pid, vid, value, field)
|
||||
results[[i]] <- data
|
||||
}
|
||||
# Bind all results together
|
||||
metro_raw <- bind_rows(results)
|
||||
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
||||
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
||||
routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
|
||||
metro_data <- metro_raw %>%
|
||||
mutate(time = with_tz(time, "America/Chicago"),
|
||||
spd = as.double(spd),
|
||||
pdist = as.double(pdist),
|
||||
lon = as.double(lon),
|
||||
lat = as.double(lat)) %>%
|
||||
mutate(date = date(time)) %>%
|
||||
group_by(pid, vid) %>%
|
||||
arrange(time) %>%
|
||||
mutate(pdist_lag = lag(pdist),
|
||||
time_lag = lag(time)) %>%
|
||||
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
|
||||
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
|
||||
left_join(routes_categorized, by = "pid")
|
||||
bucket_feet <- 500
|
||||
lat_round <- bucket_feet/364481.35
|
||||
lon_round <- bucket_feet/267203.05
|
||||
metro_summary <- metro_data %>%
|
||||
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
||||
lon_bucket = round(lon / lon_round) * lon_round) %>%
|
||||
group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd = median(spd, na.rm = TRUE),
|
||||
spd_calc = median(spd_calc, na.rm = TRUE),
|
||||
pdist = median(pdist),
|
||||
trip_count = length(unique(origtatripno)))
|
||||
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
||||
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
|
||||
metro_segments <- metro_summary %>%
|
||||
group_by(rt, pid) %>%
|
||||
arrange(pdist) %>%
|
||||
mutate(lat_bucket_lag = lag(lat_bucket),
|
||||
lon_bucket_lag = lag(lon_bucket)) %>%
|
||||
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
||||
mutate(
|
||||
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
||||
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
||||
) %>%
|
||||
st_as_sf(sf_column_name = "geometry") %>%
|
||||
group_by(rt, name, lat_bucket, lon_bucket) %>%
|
||||
summarise(spd_calc = weighted.mean(spd_calc, trip_count))
|
||||
# get counts of routes
|
||||
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
||||
# make charts
|
||||
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_point() +
|
||||
geom_smooth() +
|
||||
facet_grid(name ~ .)
|
||||
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
||||
bbox <- c(left = min(metro_data$lon),
|
||||
bottom = min(metro_data$lat),
|
||||
right = max(metro_data$lon),
|
||||
top = max(metro_data$lat))
|
||||
#get basemap
|
||||
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
||||
quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
|
||||
for (route in unique(routes_categorized$name)){
|
||||
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Metro Route Speed - ", route),
|
||||
subtitle = paste0("averaged between ",
|
||||
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
||||
" bus trips - ",
|
||||
min(date(metro_data$time)),
|
||||
" to ",
|
||||
max(date(metro_data$time))),
|
||||
x = NULL,
|
||||
y = NULL) +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey")) +
|
||||
geom_sf(data = metro_segments %>% filter(name %in% route),
|
||||
inherit.aes = FALSE,
|
||||
aes(color = spd_calc),
|
||||
linewidth = 1) +
|
||||
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
||||
ggsave(file = paste0("figures/",
|
||||
route,
|
||||
"_map.pdf"),
|
||||
title = paste0("Metro Route Speed - ", route),
|
||||
device = pdf,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
ggplot(data = metro_data %>% filter(name %in% route)) +
|
||||
geom_boxplot(aes(x = date,
|
||||
y = spd_calc))
|
||||
ggsave(file = paste0("figures/",
|
||||
route,
|
||||
"_date.pdf"),
|
||||
title = paste0("Metro Route Speed - ", route),
|
||||
device = pdf,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
}
|
||||
ggplot(data = metro_summary %>% filter(!is.blank(name)),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_boxplot()
|
||||
ggplot(data = metro_summary %>% filter(!is.na(name)),
|
||||
aes(x = pdist,
|
||||
y = spd_calc)) +
|
||||
geom_boxplot()
|
||||
ggplot(data = metro_summary %>% filter(!is.na(name)),
|
||||
aes(x = name,
|
||||
y = spd_calc)) +
|
||||
geom_boxplot()
|
||||
ggplot(data = metro_summary %>% filter(!is.na(name)),
|
||||
aes(x = name,
|
||||
y = spd_calc)) +
|
||||
geom_violin()
|
||||
ggplot(data = metro_summary %>% filter(!is.na(name)),
|
||||
aes(x = name,
|
||||
y = spd_calc)) +
|
||||
geom_boxplot()
|
@ -5,9 +5,14 @@ library(ggmap)
|
||||
library(sf)
|
||||
|
||||
# parameters needed to make connection to Database
|
||||
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
||||
org <- "e2581d54779b077f"
|
||||
bucket <- "madison-metro"
|
||||
#token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
||||
#org <- "e2581d54779b077f"
|
||||
#bucket <- "madison-metro"
|
||||
|
||||
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro_new'), 1, 88)
|
||||
org <- "32b7fde0efd8a3b3"
|
||||
bucket <- "metro_vehicles"
|
||||
|
||||
|
||||
days <- 1
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user