161 lines
6.4 KiB
R
161 lines
6.4 KiB
R
library(tidyverse)
|
|
library(ggmap)
|
|
library(sf)
|
|
library(osrm)
|
|
library(smoothr)
|
|
library(ggnewscale)
|
|
library(RColorBrewer)
|
|
library(magick)
|
|
library(rsvg)
|
|
library(parallel)
|
|
|
|
## add data from WiscTransPortal Crash Data Retrieval Facility ----
|
|
## query: SELECT *
|
|
## FROM DTCRPRD.SUMMARY_COMBINED C
|
|
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
|
|
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
|
|
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
|
|
## ORDER BY C.DOCTNMBR
|
|
|
|
## Load TOPS data ----
|
|
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
|
|
TOPS_data <- as.list(NULL)
|
|
for (file in list.files(path = "data/TOPS", pattern = "crash-data-download")) {
|
|
message(paste("importing data from file: ", file))
|
|
year <- substr(file, 21, 24)
|
|
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
|
TOPS_data[[file]] <- csv_run
|
|
}
|
|
rm(csv_run, file, year)
|
|
TOPS_data <- bind_rows(TOPS_data)
|
|
|
|
## clean up data
|
|
TOPS_data <- TOPS_data %>%
|
|
mutate(date = mdy(CRSHDATE),
|
|
age1 = as.double(AGE1),
|
|
age2 = as.double(AGE2),
|
|
latitude = as.double(LATDECDG),
|
|
longitude = as.double(LONDECDG)) %>%
|
|
mutate(month = month(date, label = TRUE),
|
|
year = as.factor(year(date)))
|
|
|
|
# Injury Severy Index and Color -----
|
|
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
|
code = c("O", "C", "B", "A", "K"),
|
|
# color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
|
color = c("#fafa6e", "#edc346", "#d88d2d", "#d88d21", "#9b1c1c" ))
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
rename(InjSevName1 = InjSevName)
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
rename(InjSevName2 = InjSevName)
|
|
|
|
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"),
|
|
INJSVR1,
|
|
ifelse(ROLE2 %in% c("BIKE", "PED"),
|
|
INJSVR2,
|
|
NA)))
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
rename(ped_inj_name = InjSevName)
|
|
|
|
# Race names
|
|
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
|
|
code = c("A", "B", "I", "H", "W"))
|
|
|
|
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
|
|
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
|
|
|
|
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
|
|
|
|
|
## set tile server info
|
|
# register stadia API key ----
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
options(ggmap.file_drawer = "basemaps")
|
|
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
|
|
# saveRDS(list(), file_drawer("index.rds"))
|
|
readRDS(file_drawer("index.rds"))
|
|
file_drawer("index.rds")
|
|
|
|
## set parameters -----
|
|
|
|
focus_muni <- c("MILWAUKEE", "MADISON")
|
|
focus_inj <- c("A", "K")
|
|
focus_role <- c("BIKE", "PED")
|
|
focus_years <- c("2023")
|
|
|
|
## generate maps for focus city
|
|
|
|
for(muni in focus_muni) {
|
|
# create bounding box around crashes that happen in city.
|
|
muni_data <- TOPS_data %>% filter(MUNINAME %in% muni)
|
|
bbox <- c(left = min(muni_data$longitude, na.rm = TRUE),
|
|
bottom = min(muni_data$latitude, na.rm = TRUE),
|
|
right = max(muni_data$longitude, na.rm = TRUE),
|
|
top = max(muni_data$latitude, na.rm = TRUE))
|
|
|
|
#get basemap
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 12, maptype = "stamen_toner_lite")
|
|
|
|
# generate map
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Crashes between pedestrians/bicyclists in ", str_to_title(muni)),
|
|
subtitle = paste0("that result in a severe injury or fatality | ",
|
|
focus_years),
|
|
caption = "data from Wisconsin DOT, UW TOPS Laboratory, and OpenStreetMap",
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank()) +
|
|
|
|
## add bike lts
|
|
#geom_sf(data = bike_lts[[county]],
|
|
# inherit.aes = FALSE,
|
|
# aes(color = lts)) +
|
|
#scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
|
|
|
|
# add crash locations
|
|
new_scale_fill() +
|
|
geom_point(data = TOPS_data %>%
|
|
filter(ROLE1 %in% focus_role
|
|
& INJSVR1 %in% focus_inj
|
|
# & age1 < 18
|
|
| ROLE2 %in% focus_role
|
|
& INJSVR2 %in% focus_inj
|
|
# & age2 < 18
|
|
) %>%
|
|
filter(longitude >= as.double(bbox[1]),
|
|
latitude >= as.double(bbox[2]),
|
|
longitude <= as.double(bbox[3]),
|
|
latitude <= as.double(bbox[4])) %>%
|
|
filter(year %in% focus_years),
|
|
aes(x = longitude,
|
|
y = latitude,
|
|
fill = ped_inj_name),
|
|
shape = 21,
|
|
size = 2) +
|
|
scale_fill_manual(values = injury_severity %>% filter(code %in% focus_inj) %>% pull(color), name = "Crash Severity") +
|
|
annotation_raster(logo,
|
|
# Position adjustments here using plot_box$max/min/range
|
|
ymin = bbox['top'] - 0.25 * 0.16,
|
|
ymax = bbox['top'],
|
|
xmin = bbox['right'] + 0.25 * 0.05,
|
|
xmax = bbox['right'] + 0.25 * 0.20) +
|
|
coord_sf(clip = "off")
|
|
|
|
ggsave(file = paste0("figures/city_maps/",
|
|
str_to_title(muni),
|
|
".pdf"),
|
|
|
|
title = paste0(str_to_title(muni), " Pedestrian/Bike crashes"),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
}
|