170 lines
7.1 KiB
Plaintext
170 lines
7.1 KiB
Plaintext
---
|
|
title: "Crash Data Summaries"
|
|
output:
|
|
html_document:
|
|
toc: true
|
|
toc_depth: 5
|
|
toc_float:
|
|
collapsed: false
|
|
smooth_scroll: true
|
|
editor_options:
|
|
chunk_output_type: console
|
|
---
|
|
|
|
|
|
# Input Data & Configuration
|
|
|
|
## Libraries
|
|
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
date()
|
|
rm(list=ls())
|
|
library(tidyverse)
|
|
library(RColorBrewer)
|
|
library(tidycensus)
|
|
library(ggrepel)
|
|
county_focus <- c("MILWAUKEE")
|
|
municipality_focus <- c("MILWAUKEE")
|
|
```
|
|
|
|
## Load TOPS data
|
|
```{r loadTOPS, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
load(file = "data/TOPS/TOPS_data.Rda")
|
|
load(file = "data/TOPS/vuln_roles.Rda")
|
|
load(file = "data/TOPS/retrieve_date.Rda")
|
|
load(file = "data/TOPS/injury_severity.Rda")
|
|
injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName)
|
|
|
|
```
|
|
|
|
## build data summaries for city
|
|
```{r citysummaries, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
|
|
data_summary <- list(NULL)
|
|
# crashes by year that resulted in a pedestrian fatality or severe injury
|
|
data_summary[["crash_by_year"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by race of pedestrian/bicyclist for focus year
|
|
data_summary[["crash_by_race"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
group_by(MUNINAME, vulnerable_role, ped_inj_name, vulnerable_race) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by race of driver that resulted in a pedestrian fatality or severe injury
|
|
data_summary[["crash_by_driver_race"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_race = ifelse(ROLE1 %in% c("DR"), race_name1, ifelse(ROLE2 %in% c("DR"), race_name2, NA))) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name, driver_race) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by age of pedestrian/bicyclist
|
|
data_summary[["crash_by_age"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(vulnerable_age = ifelse(ROLE1 %in% vuln_roles, age1, ifelse(ROLE2 %in% vuln_roles, age2, NA))) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name, vulnerable_age) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by age of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
|
|
data_summary[["crash_by_driver_age"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_age = ifelse(ROLE1 %in% c("DR"), age1, ifelse(ROLE2 %in% c("DR"), age2, NA))) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name, driver_age) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by sex of pedestrian/bicyclist
|
|
data_summary[["crash_by_sex"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(vulnerable_sex = ifelse(ROLE1 %in% vuln_roles, SEX1, ifelse(ROLE2 %in% vuln_roles, SEX1, NA))) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name, vulnerable_sex) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by sex of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
|
|
data_summary[["crash_by_driver_sex"]] <- TOPS_data %>%
|
|
filter(MUNINAME %in% municipality_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_sex = ifelse(ROLE1 %in% c("DR"), SEX1, ifelse(ROLE2 %in% c("DR"), SEX2, NA))) %>%
|
|
group_by(MUNINAME, year, vulnerable_role, ped_inj_name, driver_sex) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
## export csv files for city ----
|
|
for(table_name in as.vector(names(data_summary[-1]))) {
|
|
write_csv(data_summary[[table_name]], file = paste0("data_summaries/city/",table_name, ".csv"))
|
|
}
|
|
```
|
|
|
|
|
|
## build data summaries for county ----
|
|
```{r countysummaries, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
|
|
|
data_summary <- list(NULL)
|
|
|
|
# crashes by year that resulted in a pedestrian fatality or severe injury
|
|
data_summary[["crash_by_year"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by race of pedestrian/bicyclist for focus year
|
|
data_summary[["crash_by_race"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
group_by(CNTYNAME, vulnerable_role, ped_inj_name, vulnerable_race) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by race of driver that resulted in a pedestrian fatality or severe injury
|
|
data_summary[["crash_by_driver_race"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_race = ifelse(ROLE1 %in% c("DR"), race_name1, ifelse(ROLE2 %in% c("DR"), race_name2, NA))) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name, driver_race) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by age of pedestrian/bicyclist
|
|
data_summary[["crash_by_age"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(vulnerable_age = ifelse(ROLE1 %in% vuln_roles, age1, ifelse(ROLE2 %in% vuln_roles, age2, NA))) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name, vulnerable_age) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by age of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
|
|
data_summary[["crash_by_driver_age"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_age = ifelse(ROLE1 %in% c("DR"), age1, ifelse(ROLE2 %in% c("DR"), age2, NA))) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name, driver_age) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by sex of pedestrian/bicyclist
|
|
data_summary[["crash_by_sex"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(vulnerable_sex = ifelse(ROLE1 %in% vuln_roles, SEX1, ifelse(ROLE2 %in% vuln_roles, SEX1, NA))) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name, vulnerable_sex) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
# crashes by sex of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
|
|
data_summary[["crash_by_driver_sex"]] <- TOPS_data %>%
|
|
filter(CNTYNAME %in% county_focus) %>%
|
|
filter(ped_inj %in% c("A", "K")) %>%
|
|
mutate(driver_sex = ifelse(ROLE1 %in% c("DR"), SEX1, ifelse(ROLE2 %in% c("DR"), SEX2, NA))) %>%
|
|
group_by(CNTYNAME, year, vulnerable_role, ped_inj_name, driver_sex) %>%
|
|
summarise(count = n_distinct(DOCTNMBR))
|
|
|
|
## export csv files for county ----
|
|
for(table_name in as.vector(names(data_summary[-1]))) {
|
|
write_csv(data_summary[[table_name]], file = paste0("data_summaries/county/",table_name, ".csv"))
|
|
}
|
|
```
|
|
|
|
|