--- title: "Dynamic Crash Map" output: html_document: toc: true toc_depth: 5 toc_float: collapsed: false smooth_scroll: true editor_options: chunk_output_type: console --- # Input Data & Configuration ## Libraries ```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} date() rm(list=ls()) library(tidyverse) library(sf) library(leaflet) library(RColorBrewer) library(tidycensus) library(htmltools) library(magick) library(htmlwidgets) Sys.setenv(LANG = "en-US.UTF-8") ``` ## Load TOPS data ```{r loadTOPS, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} load(file = "data/TOPS/TOPS_data.Rda") load(file = "data/TOPS/vuln_roles.Rda") load(file = "data/TOPS/retrieve_date.Rda") load(file = "data/TOPS/injury_severity.Rda") injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName) ``` ## Mutate TOPS_data ```{r mutateTOPS, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} TOPS_data <- TOPS_data %>% mutate(Year = year, PedestrianInjurySeverity = ped_inj_name, CrashDate = CRSHDATE, CrashTime = CRSHTIME, County = CNTYNAME, Street = ONSTR, CrossStreet = ATSTR) %>% mutate(PedestrianAge = ifelse(ROLE1 %in% vuln_roles, age1, age2)) TOPS_geom <- st_as_sf(TOPS_data %>% filter(!is.na(latitude)), coords = c("longitude", "latitude"), crs = 4326) ``` ## load school locations ---- ```{r loadschooldata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} WI_schools <- st_read(dsn = "data/Schools/Wisconsin_Public_Schools_-5986231931870160084.gpkg") WI_schools <- WI_schools %>% filter(is.double(LAT), LAT > 0) %>% select("SCHOOL", "DISTRICT", "SCHOOLTYPE", "LAT", "LON") school_translate <- data.frame(en = c("Elementary School", "High School", "Combined Elementary/Secondary School", "Middle School", "Junior High School"), es = c("Escuela primaria", "Escuela secundaria", "Escuela primaria/secundaria combinada", "Escuela secundaria", "Escuela secundaria")) WI_schools <- WI_schools %>% mutate(SCHOOLTYPE_es <- school_translate$es[match(WI_schools$SCHOOLTYPE, school_translate$en)]) ``` ### Load school symbol ```{r loadschoolicon, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} school_symbol <- makeIcon(iconUrl = "icons/school_FILL0_wght400_GRAD0_opsz24.png", iconWidth = 24, iconHeight = 24, iconAnchorX = 12, iconAnchorY = 12) ``` ## Pull certain columns ```{r pullcolumns, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} focus_columns <- c("PedestrianInjurySeverity", "CrashDate", "CrashTime", "County", "Street", "CrossStreet", "PedestrianAge", "Year", "vulnerable_role", "vulnerable_role_es") Pedestrian_Crash_Data <- TOPS_data %>% # filter(CNTYNAME == focus_county) %>% select(c(all_of(focus_columns), "longitude", "latitude")) ``` ## Load Census data ```{r censusdata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} # add population census data census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40)) county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin", geometry = TRUE) %>% filter(variable == "POPESTIMATE") %>% mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", ""))) county_populations <- st_transform(county_populations, crs = 4326) ``` ## Generate County level statistics ```{r countydata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} County_Crash_Data <- Pedestrian_Crash_Data %>% filter(PedestrianInjurySeverity %in% c("Fatality", "Suspected Serious Injury", "Suspected Minor Injury")) %>% group_by(County, Year) %>% summarise(TotalCrashes = n(), longitude = mean(longitude, na.rm = TRUE), latitude = mean(latitude, na.rm = TRUE)) %>% group_by(County) %>% summarise(MeanCrashes = mean(TotalCrashes, na.rm = TRUE), longitude = mean(longitude, na.rm = TRUE), latitude = mean(latitude, na.rm = TRUE)) County_Crash_geom <- left_join(county_populations, County_Crash_Data, join_by("County")) County_Crash_geom <- County_Crash_geom %>% mutate(CrashesPerPopulation = MeanCrashes/(value/100000)) County_Crash_geom$CrashesPerPopulation[is.na(County_Crash_geom$CrashesPerPopulation)] <- 0 county_pal <- colorNumeric(palette = "YlOrRd", domain = c(min(County_Crash_geom$CrashesPerPopulation, na.rm = TRUE), max(County_Crash_geom$CrashesPerPopulation, na.rm = TRUE))) ``` #---- Generate Maps ## Generate English crash map ```{r mapenglish, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} #title style tag.map.title <- tags$style(HTML(" .leaflet-control.map-title { transform: translate(-50%,20%); position: fixed !important; left: 50%; text-align: center; padding-left: 10px; padding-right: 10px; background: rgba(255,255,255,0.75); font-weight: bold; font-size: 28px; } ")) title <- tags$div( tag.map.title, HTML(paste0("Pedestrians & Bicyclists involved in a crash
", min(year(TOPS_data$date), na.rm = TRUE), " - ", max(year(TOPS_data$date), na.rm = TRUE))) ) wisconsin_crash_map <- leaflet(options = leafletOptions(preferCanvas = TRUE)) %>% # addControl(title, position = "topleft", className="map-title") %>% # addControl(subtitle, position = "bottomleft", className="map-subtitle") %>% addProviderTiles(providers$Stadia.AlidadeSmooth) %>% addPolygons(data = County_Crash_geom, color = "black", weight = 1, fill = FALSE, group = "Crash Points") %>% addMarkers(data = WI_schools, lng=WI_schools$LON, lat = WI_schools$LAT, icon = school_symbol, label = lapply(paste0("", WI_schools$SCHOOL, " School
", WI_schools$DISTRICT, " School District
", WI_schools$SCHOOLTYPE), htmltools::HTML), group = "Schools") %>% addCircleMarkers(data = Pedestrian_Crash_Data, lng=Pedestrian_Crash_Data$longitude, lat=Pedestrian_Crash_Data$latitude, fillColor=injury_severity_pal(Pedestrian_Crash_Data$PedestrianInjurySeverity), radius=4, stroke=TRUE, color = "black", weight = 1, fillOpacity = 0.8, label = lapply(paste0("", str_to_title(replace_na(Pedestrian_Crash_Data$vulnerable_role, "")),"
", Pedestrian_Crash_Data$CrashDate, "
", Pedestrian_Crash_Data$PedestrianInjurySeverity, "
", replace_na(Pedestrian_Crash_Data$vulnerable_role, ""), " age: ", ifelse(!is.na(Pedestrian_Crash_Data$PedestrianAge), Pedestrian_Crash_Data$PedestrianAge, "unknown age")), htmltools::HTML), group = "Crash Points") %>% addLegend(position = "bottomleft", labels = injury_severity$InjSevName, colors = injury_severity$color, group = "Crash Points", title = "Injury Severity") %>% addPolygons(data = County_Crash_geom, color = "black", weight = 1, fillColor=county_pal(County_Crash_geom$CrashesPerPopulation), fillOpacity = 0.6, label = lapply(paste0("", str_to_title(County_Crash_geom$County), " County
", "population: ", format(County_Crash_geom$value, nsmall=0, big.mark=","), "
", "average crashes per year: ", round(County_Crash_geom$MeanCrashes,0), "
", "average crashes/year per 100k residents: ", round(County_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML), group = "Counties") %>% addLegend(position = "bottomleft", pal = county_pal, values = County_Crash_geom$CrashesPerPopulation, group = "Counties", title = "Crashes/year
(normalized per 100k residents)") %>% # addPolygons(data = Place_Crash_geom, # color = "black", # weight = 1, # fillColor=place_pal(Place_Crash_geom$CrashesPerPopulation), # fillOpacity = 0.6, # label = lapply(paste0("", str_to_title(Place_Crash_geom$NAME), "
", # "population: ", format(Place_Crash_geom$value, nsmall=0, big.mark=","), "
", # "average crashes per year: ", round(Place_Crash_geom$crash_count,0), "
", # "average crashes/year per 100k residents: ", round(Place_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML), # group = "Places") %>% # addLegend(position = "bottomleft", pal = place_pal, values = Place_Crash_geom$CrashesPerPopulation, group = "Places", title = "Crashes/year
(normalized per 100k residents)") %>% groupOptions(group = "Schools", zoomLevels = 13:20) %>% groupOptions(group = "Crash Points", zoomLevels = 10:20) %>% groupOptions(group ="Counties", zoomLevels = 1:9) # groupOptions(group = "Places", zoomLevels = 10:12) wisconsin_crash_map saveWidget(wisconsin_crash_map, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map.html", selfcontained = TRUE, title = "Wisconsin Bike & Pedestrian Crash Map") wisconsin_crash_map_title <- wisconsin_crash_map %>% addControl(title, position = "topleft", className="map-title") saveWidget(wisconsin_crash_map_title, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_title.html", selfcontained = TRUE, title = "Wisconsin Bike & Pedestrian Crash Map") ``` ## Generate Spanish crash map ```{r mapspanish, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE} Sys.setenv(LANG = "es-MX.UTF-8") wisconsin_crash_map_es <- leaflet(options = leafletOptions(preferCanvas = TRUE)) %>% # addControl(title, position = "topleft", className="map-title") %>% # addControl(subtitle, position = "bottomleft", className="map-subtitle") %>% addProviderTiles(providers$Stadia.AlidadeSmooth) %>% addPolygons(data = County_Crash_geom, color = "black", weight = 1, fill = FALSE, group = "Crash Points") %>% addMarkers(data = WI_schools, lng=WI_schools$LON, lat = WI_schools$LAT, icon = school_symbol, label = lapply(paste0("Escuela ", WI_schools$SCHOOL, "
", "Distrito Escolar ", WI_schools$DISTRICT, "
", WI_schools$SCHOOLTYPE_es), htmltools::HTML), group = "Schools") %>% addCircleMarkers(data = Pedestrian_Crash_Data, lng=Pedestrian_Crash_Data$longitude, lat=Pedestrian_Crash_Data$latitude, fillColor=injury_severity_pal(Pedestrian_Crash_Data$PedestrianInjurySeverity), radius=4, stroke=TRUE, color = "black", weight = 1, fillOpacity = 0.8, label = lapply(paste0("", str_to_title(replace_na(Pedestrian_Crash_Data$vulnerable_role_es, "")),"
", Pedestrian_Crash_Data$CrashDate, "
", injury_severity$InjSevName_es[match(Pedestrian_Crash_Data$PedestrianInjurySeverity, injury_severity$InjSevName)], "
", "edad de ", replace_na(Pedestrian_Crash_Data$vulnerable_role_es, ""), ": ", ifelse(!is.na(Pedestrian_Crash_Data$PedestrianAge), Pedestrian_Crash_Data$PedestrianAge, "edad desconocida")), htmltools::HTML), group = "Crash Points") %>% addLegend(position = "bottomleft", labels = injury_severity$InjSevName_es, colors = injury_severity$color, group = "Crash Points", title = "Gravedad de la herida") %>% addPolygons(data = County_Crash_geom, color = "black", weight = 1, fillColor=county_pal(County_Crash_geom$CrashesPerPopulation), fillOpacity = 0.6, label = lapply(paste0("Condado de ", str_to_title(County_Crash_geom$County), "
", "población: ", format(County_Crash_geom$value, nsmall=0, big.mark=","), "
", "choques promedio por año: ", round(County_Crash_geom$MeanCrashes,0), "
", "choques promedio/año por cada 100.000 habitantes: ", round(County_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML), group = "Counties") %>% addLegend(position = "bottomleft", pal = county_pal, values = County_Crash_geom$CrashesPerPopulation, group = "Counties", title = "Choques por año
(por 100,000 habitantes)") %>% groupOptions(group = "Schools", zoomLevels = 13:20) %>% groupOptions(group = "Crash Points", zoomLevels = 10:20) %>% groupOptions(group ="Counties", zoomLevels = 1:9) wisconsin_crash_map_es saveWidget(wisconsin_crash_map_es, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_es.html", selfcontained = TRUE, title = "Mapa de Choques de Bicicletas y Peatones en Wisconsin") title_es <- tags$div( tag.map.title, HTML(paste0("Peatones y ciclistas involucrados en un choque
", min(year(TOPS_data$date), na.rm = TRUE), " - ", max(year(TOPS_data$date), na.rm = TRUE))) ) wisconsin_crash_map_es_title <- wisconsin_crash_map_es %>% addControl(title_es, position = "topleft", className="map-title") saveWidget(wisconsin_crash_map_es_title, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_title_es.html", selfcontained = TRUE, title = "Mapa de Choques de Bicicletas y Peatones en Wisconsin") ```