added MilWAUKeeWalks.Rmd
This commit is contained in:
parent
486ad2533c
commit
e71f197046
2 changed files with 350 additions and 1 deletions
348
R/MilWALKeeWalks.Rmd
Normal file
348
R/MilWALKeeWalks.Rmd
Normal file
|
|
@ -0,0 +1,348 @@
|
|||
---
|
||||
title: "MilWALKeeWalks"
|
||||
output:
|
||||
html_document:
|
||||
toc: true
|
||||
toc_depth: 5
|
||||
toc_float:
|
||||
collapsed: false
|
||||
smooth_scroll: true
|
||||
editor_options:
|
||||
chunk_output_type: console
|
||||
---
|
||||
|
||||
|
||||
# Input Data & Configuration
|
||||
|
||||
## Libraries
|
||||
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
date()
|
||||
rm(list=ls())
|
||||
library(tidyverse)
|
||||
library(ggmap)
|
||||
library(sf)
|
||||
library(osrm)
|
||||
library(smoothr)
|
||||
library(ggnewscale)
|
||||
library(RColorBrewer)
|
||||
library(magick)
|
||||
library(rsvg)
|
||||
library(parallel)
|
||||
library(tidycensus)
|
||||
```
|
||||
|
||||
|
||||
## Load TOPS data
|
||||
```{r loadTOPS, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
load(file = "data/TOPS/TOPS_data.Rda")
|
||||
load(file = "data/TOPS/vuln_roles.Rda")
|
||||
load(file = "data/TOPS/retrieve_date.Rda")
|
||||
load(file = "data/TOPS/injury_severity.Rda")
|
||||
```
|
||||
|
||||
## filter to county
|
||||
```{r filterTOPS, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
focus_county <- "MILWAUKEE"
|
||||
TOPS_data_filtered <- TOPS_data %>% filter(CNTYNAME == focus_county)
|
||||
```
|
||||
|
||||
## identify start and end dates
|
||||
```{r startenddates, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
year_min <- min(year(TOPS_data_filtered$date))
|
||||
year_max <- max(year(TOPS_data_filtered$date))
|
||||
```
|
||||
|
||||
## intro charts
|
||||
```{r introCharts, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
ggplot() +
|
||||
geom_col(data = TOPS_data_filtered %>%
|
||||
filter(year != year_max) %>%
|
||||
filter(!is.na(vulnerable_role)) %>%
|
||||
group_by(month, vulnerable_role) %>%
|
||||
summarize(total = n()),
|
||||
aes(x = month,
|
||||
y = total/((year_max - 1) - year_min + 1),
|
||||
fill = vulnerable_role),
|
||||
position = position_dodge()) +
|
||||
geom_line(data = TOPS_data_filtered %>%
|
||||
filter(year == year_max) %>%
|
||||
filter(!is.na(vulnerable_role)) %>%
|
||||
group_by(month, vulnerable_role) %>%
|
||||
summarize(total = n()),
|
||||
aes(x = month,
|
||||
y = total,
|
||||
color = vulnerable_role,
|
||||
group = vulnerable_role),
|
||||
linewidth = 1) +
|
||||
scale_y_continuous(expand = expansion(mult = c(0,0.1))) +
|
||||
scale_fill_manual(values = c("sienna3", "deepskyblue3")) +
|
||||
scale_color_manual(values = c("sienna4", "deepskyblue4")) +
|
||||
labs(title = paste0("Crashes involved pedestrians and bicyclists"),
|
||||
subtitle = paste0(str_to_title(focus_county), " County"),
|
||||
x = "Month",
|
||||
y = "Average crashes per year",
|
||||
fill = paste0("Yearly average\n", year_min, " - ", year_max - 1),
|
||||
color = year_max,
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
"\nper direction of the WisDOT Bureau of Transportation Safety")) +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
ggsave(filename = paste0("figures/MilWALKee_Walks/", "month_role.png"),
|
||||
device = png,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
|
||||
ggplot() +
|
||||
geom_col(data = TOPS_data_filtered %>%
|
||||
filter(vulnerable_role == "Pedestrian",
|
||||
!is.na(ped_age)) %>%
|
||||
filter(year != year_max) %>%
|
||||
mutate(age = ifelse(ped_age <= 18, "child", "adult")) %>%
|
||||
group_by(month, age) %>%
|
||||
summarize(total = n()/((year_max - 1) - year_min + 1)),
|
||||
aes(x = month,
|
||||
y = total,
|
||||
fill = age),
|
||||
position = position_dodge()) +
|
||||
geom_line(data = TOPS_data_filtered %>%
|
||||
filter(year == year_max) %>%
|
||||
filter(vulnerable_role == "Pedestrian",
|
||||
!is.na(ped_age)) %>%
|
||||
mutate(age = ifelse(ped_age <= 18, "child", "adult")) %>%
|
||||
group_by(month, age, year) %>%
|
||||
summarize(total = n()),
|
||||
aes(x = month,
|
||||
y = total,
|
||||
color = age,
|
||||
group = age),
|
||||
linewidth = 1) +
|
||||
scale_y_continuous(expand = expansion(mult = c(0,0.1))) +
|
||||
scale_fill_manual(values = c("deeppink1", "darkgoldenrod1")) +
|
||||
scale_color_manual(values = c("deeppink3", "darkgoldenrod3")) +
|
||||
labs(title = paste0("Crashes involved pedestrians"),
|
||||
subtitle = paste0(str_to_title(focus_county), " County"),
|
||||
x = "Month",
|
||||
y = "Crashes",
|
||||
fill = paste0("Yearly average\n", year_min, " - ", year_max - 1),
|
||||
color = year_max,
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
"\nper direction of the WisDOT Bureau of Transportation Safety")) +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
ggsave(filename = paste0("figures/MilWALKee_Walks/", "month_age.png"),
|
||||
device = png,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
|
||||
ggplot(data = TOPS_data_filtered %>%
|
||||
filter(vulnerable_role == "Pedestrian",
|
||||
month(date) <= 8) %>%
|
||||
group_by(year) %>%
|
||||
summarize(total = n())) +
|
||||
geom_col(aes(x = year,
|
||||
y = total),
|
||||
fill = "lightblue4") +
|
||||
scale_y_continuous(expand = expansion(mult = c(0,0.1))) +
|
||||
labs(title = paste0("Crashes involved pedestrians"),
|
||||
subtitle = paste0(str_to_title(focus_county), " County | ", "January - August"),
|
||||
x = NULL,
|
||||
y = "Crashes",
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
"\nper direction of the WisDOT Bureau of Transportation Safety")) +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
ggsave(filename = paste0("figures/MilWALKee_Walks/", "ped_years.png"),
|
||||
device = png,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
```
|
||||
|
||||
## Milwaukee maps
|
||||
|
||||
## Load API keys from StadiaMaps
|
||||
```{r APIkeys, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# register stadia API key ----
|
||||
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
||||
```
|
||||
|
||||
## add county census data ----
|
||||
```{r countycensus, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
||||
county_populations <- get_estimates(geography = "county",
|
||||
year = 2022,
|
||||
product = "population",
|
||||
state = "Wisconsin",
|
||||
geometry = TRUE) %>%
|
||||
filter(variable == "POPESTIMATE") %>%
|
||||
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
|
||||
county_populations <- st_transform(county_populations, crs = 4326) %>% filter(County %in% focus_county)
|
||||
census_tract_populations <- st_transform(get_decennial(
|
||||
year = 2020,
|
||||
geography = "block",
|
||||
variables = "P1_001N",
|
||||
state = "WI",
|
||||
county = focus_county,
|
||||
geometry = TRUE
|
||||
), crs = 4326)
|
||||
|
||||
census_tract_crashes <- st_join(census_tract_populations, st_as_sf(TOPS_data_filtered %>% filter(!is.na(latitude)), coords = c("longitude", "latitude"), crs = 4326), join = st_contains) %>%
|
||||
group_by(GEOID) %>%
|
||||
summarise(count = n(), .groups = 'drop')
|
||||
|
||||
hexgrid <- rowid_to_column(st_transform(st_as_sf(st_make_grid(st_transform(county_populations, crs = 32616),
|
||||
cellsize = 3000,
|
||||
what = 'polygons',
|
||||
square = FALSE
|
||||
)), crs = 4326), "ID")
|
||||
|
||||
hex_crashes <- st_join(hexgrid, st_as_sf(TOPS_data_filtered %>% filter(!is.na(latitude)), coords = c("longitude", "latitude"), crs = 4326), join = st_contains) %>%
|
||||
filter(!is.na(year)) %>%
|
||||
filter(date >= (max(date) - (365 * 5))) %>%
|
||||
mutate(lastyear = ifelse((date <= max(date) - 365),
|
||||
"priorfive",
|
||||
"lastyear")) %>%
|
||||
group_by(ID, lastyear) %>%
|
||||
summarise(count = n(), .groups = 'drop') %>%
|
||||
st_drop_geometry() %>%
|
||||
pivot_wider(id_cols = ID, names_from = lastyear, values_from = count) %>%
|
||||
mutate(across(-ID, ~ replace_na(., 0))) %>%
|
||||
mutate(total = rowSums(dplyr::select(., -ID), na.rm = TRUE))
|
||||
|
||||
hex_crashes <- st_as_sf(left_join(hexgrid, hex_crashes), crs = 4326)
|
||||
|
||||
hex_crashes <- hex_crashes %>%
|
||||
mutate(lastyearchange = (lastyear - priorfive/5)/(priorfive/5))
|
||||
|
||||
hex_crashes_points <- st_centroid(hex_crashes)
|
||||
|
||||
```
|
||||
|
||||
```{r MilwaukeeMaps, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
# get basemap
|
||||
bbox <- st_bbox(county_populations)
|
||||
bbox <- c(left = as.double(bbox[1]),
|
||||
bottom = as.double(bbox[2]),
|
||||
right = as.double(bbox[3]),
|
||||
top = as.double(bbox[4]))
|
||||
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
||||
|
||||
# generate map with bubbles
|
||||
ggmap(basemap) +
|
||||
labs(title = paste0("Crashes between cars and pedestrians"),
|
||||
subtitle = paste0(str_to_title(focus_county),
|
||||
" County | ",
|
||||
min(year(TOPS_data$date), na.rm = TRUE),
|
||||
" - ",
|
||||
max(year(TOPS_data$date), na.rm = TRUE)),
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
"\nper direction of the WisDOT Bureau of Transportation Safety",
|
||||
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
|
||||
x = NULL,
|
||||
y = NULL,
|
||||
size = paste0("Total crashes"),
|
||||
fill = "last 12 months\ncompared to previous") +
|
||||
theme(axis.text=element_blank(),
|
||||
axis.ticks=element_blank(),
|
||||
plot.caption = element_text(color = "grey", size = 8)) +
|
||||
# add crash locations
|
||||
geom_sf(data = hex_crashes_points %>% filter(is.double(total), !is.na(total)),
|
||||
inherit.aes = FALSE,
|
||||
aes(size = total,
|
||||
fill = lastyearchange),
|
||||
linewidth = 0,
|
||||
shape = 21,
|
||||
color = "black") +
|
||||
scale_size_area() +
|
||||
scale_fill_gradient2(
|
||||
low = "darkgreen",
|
||||
mid = "white",
|
||||
high = "red",
|
||||
midpoint = 0,
|
||||
limits = c(-2, 2),
|
||||
oob = scales::squish,
|
||||
labels = scales::percent
|
||||
)
|
||||
|
||||
ggsave(file = paste0("figures/MilWALKee_Walks/",
|
||||
"milwaukee_map.png"),
|
||||
device = png,
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in",
|
||||
create.dir = TRUE)
|
||||
```
|
||||
|
||||
|
||||
## identify Halloween trick-or-treating days
|
||||
```{r trickortreatdays, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
trickortreatdays <- data_frame(year = seq(year(min(TOPS_data$date)), year(max(TOPS_data$date)), 1))
|
||||
trickortreatdays <- trickortreatdays %>%
|
||||
mutate(halloween = ymd(paste(year, "10, 31"))) %>%
|
||||
mutate(wday = wday(halloween, label = TRUE)) %>%
|
||||
mutate(satbefore = floor_date(halloween, "week", week_start = 6),
|
||||
sunbefore = floor_date(halloween, "week"))
|
||||
|
||||
trickortreatdays <- c(trickortreatdays$halloween, trickortreatdays$satbefore, trickortreatdays$sunbefore)
|
||||
TOPS_data_filtered <- TOPS_data_filtered %>% mutate(trickortreat = ifelse(date %in% trickortreatdays, TRUE, FALSE))
|
||||
TOPS_data <- TOPS_data %>% mutate(trickortreat = ifelse(date %in% trickortreatdays, TRUE, FALSE))
|
||||
|
||||
```
|
||||
|
||||
## explore graphs
|
||||
```{r exploreGraphs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||||
ggplot(data = TOPS_data_filtered %>%
|
||||
# filter(ped_inj %in% c("K", "A", "B")) %>%
|
||||
# filter(ped_age <=18) %>%
|
||||
# filter(vulnerable_role == "Pedestrian") %>%
|
||||
mutate(mday = mday(date)) %>%
|
||||
mutate(date_yearagnostic = ymd(paste("2025", month, mday))) %>%
|
||||
group_by(date_yearagnostic, year, trickortreat) %>%
|
||||
summarize(total = n())) +
|
||||
geom_col(aes(x = date_yearagnostic,
|
||||
y = total,
|
||||
fill = trickortreat)) +
|
||||
scale_x_date(minor_breaks = "month", date_labels = "%b", expand = expansion(mult = c(0,0))) +
|
||||
scale_fill_manual(values = c("black", "orange")) +
|
||||
facet_grid(year ~ .) +
|
||||
labs(title = paste0("Crashes involved pedestrians - Halloween"),
|
||||
subtitle = paste0(str_to_title(focus_county), " County | ", year_min, " - ", year_max),
|
||||
x = NULL,
|
||||
y = "Crashes",
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
"\nper direction of the WisDOT Bureau of Transportation Safety")) +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
|
||||
|
||||
ggplot(data = TOPS_data_filtered %>%
|
||||
# filter(ped_inj %in% c("K", "A", "B")) %>%
|
||||
mutate(age = ifelse(ped_age <= 18, "child", "adult"))) +
|
||||
geom_bar(aes(x = month,
|
||||
fill = age),
|
||||
position = "fill")
|
||||
|
||||
ggplot(data = TOPS_data_filtered %>%
|
||||
# filter(ped_age <=18) %>%
|
||||
# filter(vulnerable_role == "Pedestrian") %>%
|
||||
mutate(age = ifelse(ped_age <= 18, "child", "adult")) %>%
|
||||
mutate(date_yearagnostic = ymd(paste("2025", month, mday(date)))) %>%
|
||||
group_by(date_yearagnostic, year, age, trickortreat) %>%
|
||||
summarize(total = n())) +
|
||||
# geom_vline(aes(xintercept = ymd("2025-10-31")),
|
||||
# linetype = "dashed",
|
||||
# alpha = 0.5) +
|
||||
geom_col(aes(x = date_yearagnostic,
|
||||
y = total,
|
||||
fill = trickortreat)) +
|
||||
scale_x_date(minor_breaks = "month", date_labels = "%b", expand = expansion(mult = c(0,0))) +
|
||||
scale_fill_manual(values = c("black", "orange")) +
|
||||
facet_grid(year ~ .)
|
||||
|
||||
```
|
||||
|
|
@ -86,7 +86,8 @@ TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
|
|||
INJSVR1,
|
||||
ifelse(ROLE2 %in% vuln_roles,
|
||||
INJSVR2,
|
||||
NA)))
|
||||
NA))) %>%
|
||||
mutate(ped_age = ifelse(ROLE1 %in% vuln_roles, age1, age2))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue