changed directory structure, first move to Makefile
This commit is contained in:
parent
46d41b4ea1
commit
bf056e6375
21 changed files with 47 additions and 7 deletions
171
R/crash_summary_charts.R
Normal file
171
R/crash_summary_charts.R
Normal file
|
@ -0,0 +1,171 @@
|
|||
library(tidyverse)
|
||||
library(RColorBrewer)
|
||||
library(tidycensus)
|
||||
library(ggrepel)
|
||||
|
||||
## Load TOPS data ----
|
||||
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
|
||||
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
|
||||
## Step 2 - include RACE1 and RACE2 for download in preferences
|
||||
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
|
||||
TOPS_data <- as.list(NULL)
|
||||
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
||||
message(paste("importing data from file: ", file))
|
||||
year <- substr(file, 21, 24)
|
||||
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
||||
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
|
||||
TOPS_data[[file]] <- csv_run
|
||||
}
|
||||
rm(csv_run, file, year)
|
||||
TOPS_data <- bind_rows(TOPS_data)
|
||||
|
||||
## clean up data ----
|
||||
TOPS_data <- TOPS_data %>%
|
||||
mutate(date = mdy(CRSHDATE),
|
||||
age1 = as.double(AGE1),
|
||||
age2 = as.double(AGE2),
|
||||
latitude = as.double(LATDECDG),
|
||||
longitude = as.double(LONDECDG)) %>%
|
||||
mutate(month = month(date, label = TRUE),
|
||||
year = as.factor(year(date)))
|
||||
|
||||
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
|
||||
|
||||
# Injury Severy Index and Color -----
|
||||
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
||||
code = c("O", "C", "B", "A", "K"),
|
||||
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(InjSevName1 = InjSevName)
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(InjSevName2 = InjSevName)
|
||||
|
||||
# add bike or pedestrian roles ----
|
||||
|
||||
bike_roles <- c("BIKE", "O BIKE")
|
||||
ped_roles <- c("PED", "O PED", "PED NO")
|
||||
vuln_roles <- c(bike_roles, ped_roles)
|
||||
|
||||
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
|
||||
INJSVR1,
|
||||
ifelse(ROLE2 %in% vuln_roles,
|
||||
INJSVR2,
|
||||
NA)))
|
||||
|
||||
# bike or ped
|
||||
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
|
||||
"Bicyclist",
|
||||
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
|
||||
"Pedestrian",
|
||||
NA)))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
||||
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||||
rename(ped_inj_name = InjSevName)
|
||||
|
||||
# Race names
|
||||
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
|
||||
code = c("A", "B", "I", "H", "W"))
|
||||
|
||||
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
|
||||
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
|
||||
|
||||
## make mutate TOPS_data
|
||||
TOPS_data <- TOPS_data %>%
|
||||
mutate(Year = year,
|
||||
PedestrianInjurySeverity = ped_inj_name,
|
||||
CrashDate = CRSHDATE,
|
||||
CrashTime = CRSHTIME,
|
||||
County = CNTYNAME,
|
||||
Street = ONSTR,
|
||||
CrossStreet = ATSTR) %>%
|
||||
mutate(PedestrianAge = ifelse(ROLE1 %in% vuln_roles, age1, age2))
|
||||
|
||||
# add population census data ----
|
||||
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
||||
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin") %>%
|
||||
filter(variable == "POPESTIMATE") %>%
|
||||
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
|
||||
|
||||
|
||||
## generate county charts ----
|
||||
county_focus <- unique(TOPS_data %>%
|
||||
group_by(CNTYNAME) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
slice_max(TotalCrashes, n = 8) %>%
|
||||
pull(CNTYNAME))
|
||||
|
||||
|
||||
TOPS_data %>%
|
||||
filter(ped_inj %in% c("A", "K")) %>%
|
||||
group_by(CNTYNAME, Year) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
mutate(County = CNTYNAME) %>%
|
||||
left_join(county_populations, join_by("County")) %>%
|
||||
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||||
filter(County %in% county_focus) %>%
|
||||
ggplot() +
|
||||
geom_line(aes(x = Year,
|
||||
y = CrashesPerPopulation,
|
||||
color = str_to_title(CNTYNAME),
|
||||
group = CNTYNAME),
|
||||
size = 1) +
|
||||
geom_label_repel(data = TOPS_data %>%
|
||||
filter(ped_inj %in% c("A", "K")) %>%
|
||||
group_by(CNTYNAME, Year) %>%
|
||||
summarise(TotalCrashes = n()) %>%
|
||||
mutate(County = CNTYNAME) %>%
|
||||
left_join(county_populations, join_by("County")) %>%
|
||||
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
|
||||
filter(County %in% county_focus,
|
||||
Year == 2023),
|
||||
aes(x = Year,
|
||||
y = CrashesPerPopulation,
|
||||
label = str_to_title(County),
|
||||
fill = County),
|
||||
size=3,
|
||||
min.segment.length=0,
|
||||
segment.size = 0.25,
|
||||
nudge_x=0.5,
|
||||
direction="y") +
|
||||
scale_color_brewer(type = "qual", guide = NULL) +
|
||||
scale_fill_brewer(type = "qual", guide = NULL) +
|
||||
scale_x_discrete(expand = expansion(add = c(0.5,0.75))) +
|
||||
labs(title = "Drivers crashing into pedestrians & bicyclists per 100,000 residents",
|
||||
subtitle = "Fatalities and Severe Injuries | 2017-2023",
|
||||
x = "Year",
|
||||
y = "Total crashes per year per 100,000 residents",
|
||||
color = "County",
|
||||
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
||||
strftime(retrieve_date, format = "%m/%Y"),
|
||||
" per direction of the WisDOT Bureau of Transportation Safety",
|
||||
"\nbasemap from StadiaMaps and OpenStreetMap Contributers")) +
|
||||
theme(plot.caption = element_text(color = "grey"))
|
||||
|
||||
ggsave(file = paste0("figures/crash_summaries/counties_year.pdf"),
|
||||
height = 8.5,
|
||||
width = 11,
|
||||
units = "in")
|
||||
|
||||
TOPS_data %>%
|
||||
filter(County %in% county_focus) %>%
|
||||
group_by(County, vulnerable_role) %>%
|
||||
summarise(count = n()) %>%
|
||||
ggplot() +
|
||||
geom_col(aes(x = County,
|
||||
y = count,
|
||||
fill = vulnerable_role))
|
||||
|
||||
|
||||
TOPS_data %>%
|
||||
filter(County %in% "DANE") %>%
|
||||
group_by(County, vulnerable_role, year) %>%
|
||||
summarise(count = n()) %>%
|
||||
ggplot() +
|
||||
geom_col(aes(x = year,
|
||||
y = count,
|
||||
fill = vulnerable_role),
|
||||
position = position_dodge())
|
Loading…
Add table
Add a link
Reference in a new issue