changed directory structure, first move to Makefile

This commit is contained in:
Ben Varick 2025-01-27 13:20:09 -06:00
parent 46d41b4ea1
commit bf056e6375
Signed by: ben
SSH key fingerprint: SHA256:jWnpFDAcacYM5aPFpYRqlsamlDyKNpSj3jj+k4ojtUo
21 changed files with 47 additions and 7 deletions

160
R/city_maps.R Normal file
View file

@ -0,0 +1,160 @@
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(ggnewscale)
library(RColorBrewer)
library(magick)
library(rsvg)
library(parallel)
## add data from WiscTransPortal Crash Data Retrieval Facility ----
## query: SELECT *
## FROM DTCRPRD.SUMMARY_COMBINED C
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
## ORDER BY C.DOCTNMBR
## Load TOPS data ----
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
# Injury Severy Index and Color -----
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c("O", "C", "B", "A", "K"),
# color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
color = c("#fafa6e", "#edc346", "#d88d2d", "#d88d21", "#9b1c1c" ))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"),
INJSVR1,
ifelse(ROLE2 %in% c("BIKE", "PED"),
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# Race names
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
code = c("A", "B", "I", "H", "W"))
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
## set tile server info
# register stadia API key ----
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
options(ggmap.file_drawer = "basemaps")
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
# saveRDS(list(), file_drawer("index.rds"))
readRDS(file_drawer("index.rds"))
file_drawer("index.rds")
## set parameters -----
focus_muni <- c("MILWAUKEE", "MADISON")
focus_inj <- c("A", "K")
focus_role <- c("BIKE", "PED")
focus_years <- c("2023")
## generate maps for focus city
for(muni in focus_muni) {
# create bounding box around crashes that happen in city.
muni_data <- TOPS_data %>% filter(MUNINAME %in% muni)
bbox <- c(left = min(muni_data$longitude, na.rm = TRUE),
bottom = min(muni_data$latitude, na.rm = TRUE),
right = max(muni_data$longitude, na.rm = TRUE),
top = max(muni_data$latitude, na.rm = TRUE))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 12, maptype = "stamen_toner_lite")
# generate map
ggmap(basemap) +
labs(title = paste0("Crashes between pedestrians/bicyclists in ", str_to_title(muni)),
subtitle = paste0("that result in a severe injury or fatality | ",
focus_years),
caption = "data from Wisconsin DOT, UW TOPS Laboratory, and OpenStreetMap",
x = NULL,
y = NULL) +
theme(axis.text=element_blank(),
axis.ticks=element_blank()) +
## add bike lts
#geom_sf(data = bike_lts[[county]],
# inherit.aes = FALSE,
# aes(color = lts)) +
#scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
# add crash locations
new_scale_fill() +
geom_point(data = TOPS_data %>%
filter(ROLE1 %in% focus_role
& INJSVR1 %in% focus_inj
# & age1 < 18
| ROLE2 %in% focus_role
& INJSVR2 %in% focus_inj
# & age2 < 18
) %>%
filter(longitude >= as.double(bbox[1]),
latitude >= as.double(bbox[2]),
longitude <= as.double(bbox[3]),
latitude <= as.double(bbox[4])) %>%
filter(year %in% focus_years),
aes(x = longitude,
y = latitude,
fill = ped_inj_name),
shape = 21,
size = 2) +
scale_fill_manual(values = injury_severity %>% filter(code %in% focus_inj) %>% pull(color), name = "Crash Severity") +
annotation_raster(logo,
# Position adjustments here using plot_box$max/min/range
ymin = bbox['top'] - 0.25 * 0.16,
ymax = bbox['top'],
xmin = bbox['right'] + 0.25 * 0.05,
xmax = bbox['right'] + 0.25 * 0.20) +
coord_sf(clip = "off")
ggsave(file = paste0("figures/city_maps/",
str_to_title(muni),
".pdf"),
title = paste0(str_to_title(muni), " Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
}

262
R/crash_summaries.R Normal file
View file

@ -0,0 +1,262 @@
library(tidyverse)
## Load TOPS data ----
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
## Step 2 - include RACE1 and RACE2 for download in preferences
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data ----
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
# Injury Severy Index and Color -----
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c("O", "C", "B", "A", "K"),
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
# Race names
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
code = c("A", "B", "I", "H", "W"))
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
## set parameters ----
county_focus <- c("MILWAUKEE")
municipality_focus <- c("MILWAUKEE")
## build data summaries for city ----
data_summary <- list(NULL)
# crashes by year that resulted in a pedestrian fatality or severe injury
data_summary[["crash_by_year"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by race of pedestrian/bicyclist for focus year
data_summary[["crash_by_race"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_race = ifelse(ROLE1 %in% c("BIKE", "PED"), race_name1, ifelse(ROLE2 %in% c("BIKE", "PED"), race_name2, NA))) %>%
group_by(MUNINAME, ped_type, ped_inj, ped_race) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by race of driver that resulted in a pedestrian fatality or severe injury
data_summary[["crash_by_driver_race"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_race = ifelse(ROLE1 %in% c("DR"), race_name1, ifelse(ROLE2 %in% c("DR"), race_name2, NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj, driver_race) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by age of pedestrian/bicyclist
data_summary[["crash_by_age"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_age = ifelse(ROLE1 %in% c("BIKE", "PED"), age1, ifelse(ROLE2 %in% c("BIKE", "PED"), age2, NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj, ped_age) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by age of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
data_summary[["crash_by_driver_age"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_age = ifelse(ROLE1 %in% c("DR"), age1, ifelse(ROLE2 %in% c("BIKE", "PED"), age2, NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj, driver_age) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by sex of pedestrian/bicyclist
data_summary[["crash_by_sex"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_sex = ifelse(ROLE1 %in% c("BIKE", "PED"), SEX1, ifelse(ROLE2 %in% c("BIKE", "PED"), SEX1, NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj, ped_sex) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by sex of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
data_summary[["crash_by_driver_sex"]] <- TOPS_data %>%
filter(MUNINAME %in% municipality_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_sex = ifelse(ROLE1 %in% c("DR"), SEX1, ifelse(ROLE2 %in% c("BIKE", "PED"), SEX1, NA))) %>%
group_by(MUNINAME, year, ped_type, ped_inj, driver_sex) %>%
summarise(count = n_distinct(DOCTNMBR))
## export csv files for city ----
for(table_name in as.vector(names(data_summary[-1]))) {
write_csv(data_summary[[table_name]], file = paste0("data_summaries/city/",table_name, ".csv"))
}
## build data summaries for county ----
data_summary <- list(NULL)
# crashes by year that resulted in a pedestrian fatality or severe injury
data_summary[["crash_by_year"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by race of pedestrian/bicyclist for focus year
data_summary[["crash_by_race"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_race = ifelse(ROLE1 %in% c("BIKE", "PED"), race_name1, ifelse(ROLE2 %in% c("BIKE", "PED"), race_name2, NA))) %>%
group_by(CNTYNAME, ped_type, ped_inj, ped_race) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by race of driver that resulted in a pedestrian fatality or severe injury
data_summary[["crash_by_driver_race"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_race = ifelse(ROLE1 %in% c("DR"), race_name1, ifelse(ROLE2 %in% c("DR"), race_name2, NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj, driver_race) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by age of pedestrian/bicyclist
data_summary[["crash_by_age"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_age = ifelse(ROLE1 %in% c("BIKE", "PED"), age1, ifelse(ROLE2 %in% c("BIKE", "PED"), age2, NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj, ped_age) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by age of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
data_summary[["crash_by_driver_age"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_age = ifelse(ROLE1 %in% c("DR"), age1, ifelse(ROLE2 %in% c("BIKE", "PED"), age2, NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj, driver_age) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by sex of pedestrian/bicyclist
data_summary[["crash_by_sex"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
ped_sex = ifelse(ROLE1 %in% c("BIKE", "PED"), SEX1, ifelse(ROLE2 %in% c("BIKE", "PED"), SEX1, NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj, ped_sex) %>%
summarise(count = n_distinct(DOCTNMBR))
# crashes by sex of driver that resulted in a severe injury or fatality of a pedestrian/bicyclist
data_summary[["crash_by_driver_sex"]] <- TOPS_data %>%
filter(CNTYNAME %in% county_focus) %>%
filter(ROLE1 %in% c("BIKE", "PED")
& INJSVR1 %in% c("A", "K")
| ROLE2 %in% c("BIKE", "PED")
& INJSVR2 %in% c("A", "K")
) %>%
mutate(ped_type = ifelse(ROLE1 %in% c("BIKE", "PED"), ROLE1, ifelse(ROLE2 %in% c("BIKE", "PED"), ROLE2, NA)),
ped_inj = ifelse(ROLE1 %in% c("BIKE", "PED"), as.character(InjSevName1), ifelse(ROLE2 %in% c("BIKE", "PED"), as.character(InjSevName2), NA)),
driver_sex = ifelse(ROLE1 %in% c("DR"), SEX1, ifelse(ROLE2 %in% c("BIKE", "PED"), SEX1, NA))) %>%
group_by(CNTYNAME, year, ped_type, ped_inj, driver_sex) %>%
summarise(count = n_distinct(DOCTNMBR))
## export csv files for county ----
for(table_name in as.vector(names(data_summary[-1]))) {
write_csv(data_summary[[table_name]], file = paste0("data_summaries/county/",table_name, ".csv"))
}

171
R/crash_summary_charts.R Normal file
View file

@ -0,0 +1,171 @@
library(tidyverse)
library(RColorBrewer)
library(tidycensus)
library(ggrepel)
## Load TOPS data ----
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
## Step 2 - include RACE1 and RACE2 for download in preferences
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data ----
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# Injury Severy Index and Color -----
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c("O", "C", "B", "A", "K"),
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
# add bike or pedestrian roles ----
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# Race names
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
code = c("A", "B", "I", "H", "W"))
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
## make mutate TOPS_data
TOPS_data <- TOPS_data %>%
mutate(Year = year,
PedestrianInjurySeverity = ped_inj_name,
CrashDate = CRSHDATE,
CrashTime = CRSHTIME,
County = CNTYNAME,
Street = ONSTR,
CrossStreet = ATSTR) %>%
mutate(PedestrianAge = ifelse(ROLE1 %in% vuln_roles, age1, age2))
# add population census data ----
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin") %>%
filter(variable == "POPESTIMATE") %>%
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
## generate county charts ----
county_focus <- unique(TOPS_data %>%
group_by(CNTYNAME) %>%
summarise(TotalCrashes = n()) %>%
slice_max(TotalCrashes, n = 8) %>%
pull(CNTYNAME))
TOPS_data %>%
filter(ped_inj %in% c("A", "K")) %>%
group_by(CNTYNAME, Year) %>%
summarise(TotalCrashes = n()) %>%
mutate(County = CNTYNAME) %>%
left_join(county_populations, join_by("County")) %>%
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
filter(County %in% county_focus) %>%
ggplot() +
geom_line(aes(x = Year,
y = CrashesPerPopulation,
color = str_to_title(CNTYNAME),
group = CNTYNAME),
size = 1) +
geom_label_repel(data = TOPS_data %>%
filter(ped_inj %in% c("A", "K")) %>%
group_by(CNTYNAME, Year) %>%
summarise(TotalCrashes = n()) %>%
mutate(County = CNTYNAME) %>%
left_join(county_populations, join_by("County")) %>%
mutate(CrashesPerPopulation = TotalCrashes/value*100000) %>%
filter(County %in% county_focus,
Year == 2023),
aes(x = Year,
y = CrashesPerPopulation,
label = str_to_title(County),
fill = County),
size=3,
min.segment.length=0,
segment.size = 0.25,
nudge_x=0.5,
direction="y") +
scale_color_brewer(type = "qual", guide = NULL) +
scale_fill_brewer(type = "qual", guide = NULL) +
scale_x_discrete(expand = expansion(add = c(0.5,0.75))) +
labs(title = "Drivers crashing into pedestrians & bicyclists per 100,000 residents",
subtitle = "Fatalities and Severe Injuries | 2017-2023",
x = "Year",
y = "Total crashes per year per 100,000 residents",
color = "County",
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers")) +
theme(plot.caption = element_text(color = "grey"))
ggsave(file = paste0("figures/crash_summaries/counties_year.pdf"),
height = 8.5,
width = 11,
units = "in")
TOPS_data %>%
filter(County %in% county_focus) %>%
group_by(County, vulnerable_role) %>%
summarise(count = n()) %>%
ggplot() +
geom_col(aes(x = County,
y = count,
fill = vulnerable_role))
TOPS_data %>%
filter(County %in% "DANE") %>%
group_by(County, vulnerable_role, year) %>%
summarise(count = n()) %>%
ggplot() +
geom_col(aes(x = year,
y = count,
fill = vulnerable_role),
position = position_dodge())

373
R/dynamic_crash_map.R Normal file
View file

@ -0,0 +1,373 @@
library(tidyverse)
library(sf)
#library(tmap)
library(leaflet)
library(RColorBrewer)
library(tidycensus)
library(htmltools)
library(magick)
library(htmlwidgets)
Sys.setenv(LANG = "en-US.UTF-8")
## Load TOPS data ----
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
## Step 2 - include RACE1 and RACE2 for download in preferences
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data ----
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# Injury Severity Index and Color -----
injury_severity <- data.frame(InjSevName = c("Injury Severity Unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
InjSevName_es = c("Gravedad de la herida desconocida", "Sin herida aparente", "Posible herida", "Sospecha de herida menor", "Sospecha de herida grave", "Fatalidad"),
code = c(NA, "O", "C", "B", "A", "K"),
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)),
vulnerable_role_es = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Ciclista",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Peatón",
NA)))
# Race names
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
code = c("A", "B", "I", "H", "W"))
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
TOPS_data <- left_join(TOPS_data, race %>% select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
## make mutate TOPS_data
TOPS_data <- TOPS_data %>%
mutate(Year = year,
PedestrianInjurySeverity = ped_inj_name,
CrashDate = CRSHDATE,
CrashTime = CRSHTIME,
County = CNTYNAME,
Street = ONSTR,
CrossStreet = ATSTR) %>%
mutate(PedestrianAge = ifelse(ROLE1 %in% vuln_roles, age1, age2))
TOPS_geom <- st_as_sf(TOPS_data %>% filter(!is.na(latitude)), coords = c("longitude", "latitude"), crs = 4326)
## load school locations ----
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
WI_schools <- WI_schools %>%
filter(is.double(LAT),
LAT > 0) %>%
select("SCHOOL", "DISTRICT", "SCHOOLTYPE", "LAT", "LON")
school_translate <- data.frame(en = c("Elementary School", "High School", "Combined Elementary/Secondary School", "Middle School", "Junior High School"),
es = c("Escuela primaria", "Escuela secundaria", "Escuela primaria/secundaria combinada", "Escuela secundaria", "Escuela secundaria"))
WI_schools <- WI_schools %>%
mutate(SCHOOLTYPE_es <- school_translate$es[match(WI_schools$SCHOOLTYPE, school_translate$en)])
school_symbol <- makeIcon(iconUrl = "other/school_FILL0_wght400_GRAD0_opsz24.png",
iconWidth = 24,
iconHeight = 24,
iconAnchorX = 12,
iconAnchorY = 12)
focus_columns <- c("PedestrianInjurySeverity", "CrashDate", "CrashTime", "County", "Street", "CrossStreet", "PedestrianAge", "Year", "vulnerable_role", "vulnerable_role_es")
focus_county <- "DANE"
# generate map with leaflet ----
Pedestrian_Crash_Data <- TOPS_data %>%
# filter(CNTYNAME == focus_county) %>%
select(c(all_of(focus_columns), "longitude", "latitude"))
County_Crash_Data <- Pedestrian_Crash_Data %>%
filter(PedestrianInjurySeverity %in% c("Fatality", "Suspected Serious Injury", "Suspected Minor Injury")) %>%
group_by(County, Year) %>%
summarise(TotalCrashes = n(),
longitude = mean(longitude, na.rm = TRUE),
latitude = mean(latitude, na.rm = TRUE)) %>%
group_by(County) %>%
summarise(MeanCrashes = mean(TotalCrashes, na.rm = TRUE),
longitude = mean(longitude, na.rm = TRUE),
latitude = mean(latitude, na.rm = TRUE))
# add population census data
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin", geometry = TRUE) %>%
filter(variable == "POPESTIMATE") %>%
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
county_populations <- st_transform(county_populations, crs = 4326)
County_Crash_geom <- left_join(county_populations, County_Crash_Data, join_by("County"))
County_Crash_geom <- County_Crash_geom %>%
mutate(CrashesPerPopulation = MeanCrashes/(value/100000))
County_Crash_geom$CrashesPerPopulation[is.na(County_Crash_geom$CrashesPerPopulation)] <- 0
county_pal <- colorNumeric(palette = "YlOrRd", domain = c(min(County_Crash_geom$CrashesPerPopulation, na.rm = TRUE), max(County_Crash_geom$CrashesPerPopulation, na.rm = TRUE)))
# ---- census block data
census_year <- 2020
state <- "WI"
tract_data <- st_transform(get_decennial(
geography = "tract",
variables = "P1_001N", # Total population variable for 2020 census
state = state,
year = census_year,
geometry = TRUE
),
crs = 4326)
Census_Crash_geom <- st_join(tract_data,
st_as_sf(Pedestrian_Crash_Data %>% filter(PedestrianInjurySeverity %in% c("Fatality", "Suspected Serious Injury", "Suspected Minor Injury"),
latitude > 0),
coords = c("longitude", "latitude"),
crs = 4326),
join = st_contains) %>%
group_by(GEOID, value) %>%
summarize(crash_count = n()) %>%
filter(value > 0) %>%
mutate(CrashesPerPopulation = crash_count/(value/100000))
census_pal <- colorNumeric(palette = "YlOrRd", domain = c(min(Census_Crash_geom$CrashesPerPopulation, na.rm = TRUE), 3000))
# ---- Municipality data
city_data <- st_transform(get_decennial(
geography = "place",
variables = "P1_001N", # Total population variable for 2020 census
state = state,
year = census_year,
geometry = TRUE
),
crs = 4326)
Place_Crash_geom <- st_join(city_data,
st_as_sf(Pedestrian_Crash_Data %>% filter(PedestrianInjurySeverity %in% c("Fatality", "Suspected Serious Injury", "Suspected Minor Injury"),
latitude > 0),
coords = c("longitude", "latitude"),
crs = 4326),
join = st_contains) %>%
group_by(GEOID, value, NAME) %>%
summarize(crash_count = n()) %>%
filter(value > 500) %>%
mutate(CrashesPerPopulation = crash_count/(value/100000))
place_pal <- colorNumeric(palette = "YlOrRd", domain = c(min(Place_Crash_geom$CrashesPerPopulation, na.rm = TRUE), max(Place_Crash_geom$CrashesPerPopulation, na.rm = TRUE)))
#---- make map
#title style
tag.map.title <- tags$style(HTML("
.leaflet-control.map-title {
transform: translate(-50%,20%);
position: fixed !important;
left: 50%;
text-align: center;
padding-left: 10px;
padding-right: 10px;
background: rgba(255,255,255,0.75);
font-weight: bold;
font-size: 28px;
}
"))
title <- tags$div(
tag.map.title, HTML(paste0("Pedestrians & Bicyclists involved in a crash</br>",
min(year(TOPS_data$date), na.rm = TRUE),
" - ",
max(year(TOPS_data$date), na.rm = TRUE)))
)
wisconsin_crash_map <-
leaflet(options = leafletOptions(preferCanvas = TRUE)) %>%
# addControl(title, position = "topleft", className="map-title") %>%
# addControl(subtitle, position = "bottomleft", className="map-subtitle") %>%
addProviderTiles(providers$Stadia.AlidadeSmooth) %>%
addPolygons(data = County_Crash_geom,
color = "black",
weight = 1,
fill = FALSE,
group = "Crash Points") %>%
addMarkers(data = WI_schools,
lng=WI_schools$LON,
lat = WI_schools$LAT,
icon = school_symbol,
label = lapply(paste0("<b>", WI_schools$SCHOOL, " School</b></br>",
WI_schools$DISTRICT, " School District</br>",
WI_schools$SCHOOLTYPE), htmltools::HTML),
group = "Schools") %>%
addCircleMarkers(data = Pedestrian_Crash_Data,
lng=Pedestrian_Crash_Data$longitude,
lat=Pedestrian_Crash_Data$latitude,
fillColor=injury_severity_pal(Pedestrian_Crash_Data$PedestrianInjurySeverity),
radius=4,
stroke=TRUE,
color = "black",
weight = 1,
fillOpacity = 0.8,
label = lapply(paste0("<b>", str_to_title(replace_na(Pedestrian_Crash_Data$vulnerable_role, ""))," </b><br>",
Pedestrian_Crash_Data$CrashDate, "</br>",
Pedestrian_Crash_Data$PedestrianInjurySeverity, "</br>",
replace_na(Pedestrian_Crash_Data$vulnerable_role, ""), " age: ", ifelse(!is.na(Pedestrian_Crash_Data$PedestrianAge), Pedestrian_Crash_Data$PedestrianAge, "unknown age")), htmltools::HTML),
group = "Crash Points") %>%
addLegend(position = "bottomleft", labels = injury_severity$InjSevName, colors = injury_severity$color, group = "Crash Points", title = "Injury Severity") %>%
addPolygons(data = County_Crash_geom,
color = "black",
weight = 1,
fillColor=county_pal(County_Crash_geom$CrashesPerPopulation),
fillOpacity = 0.6,
label = lapply(paste0("<b>", str_to_title(County_Crash_geom$County), " County</b></br>",
"population: ", format(County_Crash_geom$value, nsmall=0, big.mark=","), "<br>",
"average crashes per year: ", round(County_Crash_geom$MeanCrashes,0), "</br>",
"average crashes/year per 100k residents: ", round(County_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML),
group = "Counties") %>%
addLegend(position = "bottomleft", pal = county_pal, values = County_Crash_geom$CrashesPerPopulation, group = "Counties", title = "Crashes/year</br>(normalized per 100k residents)") %>%
# addPolygons(data = Place_Crash_geom,
# color = "black",
# weight = 1,
# fillColor=place_pal(Place_Crash_geom$CrashesPerPopulation),
# fillOpacity = 0.6,
# label = lapply(paste0("<b>", str_to_title(Place_Crash_geom$NAME), "</b></br>",
# "population: ", format(Place_Crash_geom$value, nsmall=0, big.mark=","), "<br>",
# "average crashes per year: ", round(Place_Crash_geom$crash_count,0), "</br>",
# "average crashes/year per 100k residents: ", round(Place_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML),
# group = "Places") %>%
# addLegend(position = "bottomleft", pal = place_pal, values = Place_Crash_geom$CrashesPerPopulation, group = "Places", title = "Crashes/year</br>(normalized per 100k residents)") %>%
groupOptions(group = "Schools", zoomLevels = 13:20) %>%
groupOptions(group = "Crash Points", zoomLevels = 10:20) %>%
groupOptions(group ="Counties", zoomLevels = 1:9)
# groupOptions(group = "Places", zoomLevels = 10:12)
wisconsin_crash_map
saveWidget(wisconsin_crash_map, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map.html",
selfcontained = TRUE,
title = "Wisconsin Bike & Pedestrian Crash Map")
wisconsin_crash_map_title <- wisconsin_crash_map %>%
addControl(title, position = "topleft", className="map-title")
saveWidget(wisconsin_crash_map_title, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_title.html",
selfcontained = TRUE,
title = "Wisconsin Bike & Pedestrian Crash Map")
# Spanish version ----
Sys.setenv(LANG = "es-MX.UTF-8")
wisconsin_crash_map_es <-
leaflet(options = leafletOptions(preferCanvas = TRUE)) %>%
# addControl(title, position = "topleft", className="map-title") %>%
# addControl(subtitle, position = "bottomleft", className="map-subtitle") %>%
addProviderTiles(providers$Stadia.AlidadeSmooth) %>%
addPolygons(data = County_Crash_geom,
color = "black",
weight = 1,
fill = FALSE,
group = "Crash Points") %>%
addMarkers(data = WI_schools,
lng=WI_schools$LON,
lat = WI_schools$LAT,
icon = school_symbol,
label = lapply(paste0("<b>Escuela ", WI_schools$SCHOOL, "</b></br>",
"Distrito Escolar ", WI_schools$DISTRICT, "</br>",
WI_schools$SCHOOLTYPE_es), htmltools::HTML),
group = "Schools") %>%
addCircleMarkers(data = Pedestrian_Crash_Data,
lng=Pedestrian_Crash_Data$longitude,
lat=Pedestrian_Crash_Data$latitude,
fillColor=injury_severity_pal(Pedestrian_Crash_Data$PedestrianInjurySeverity),
radius=4,
stroke=TRUE,
color = "black",
weight = 1,
fillOpacity = 0.8,
label = lapply(paste0("<b>", str_to_title(replace_na(Pedestrian_Crash_Data$vulnerable_role_es, ""))," </b><br>",
Pedestrian_Crash_Data$CrashDate, "</br>",
injury_severity$InjSevName_es[match(Pedestrian_Crash_Data$PedestrianInjurySeverity, injury_severity$InjSevName)], "</br>",
"edad de ", replace_na(Pedestrian_Crash_Data$vulnerable_role_es, ""), ": ", ifelse(!is.na(Pedestrian_Crash_Data$PedestrianAge), Pedestrian_Crash_Data$PedestrianAge, "edad desconocida")), htmltools::HTML),
group = "Crash Points") %>%
addLegend(position = "bottomleft", labels = injury_severity$InjSevName_es, colors = injury_severity$color, group = "Crash Points", title = "Gravedad de la herida") %>%
addPolygons(data = County_Crash_geom,
color = "black",
weight = 1,
fillColor=county_pal(County_Crash_geom$CrashesPerPopulation),
fillOpacity = 0.6,
label = lapply(paste0("<b>Condado de ", str_to_title(County_Crash_geom$County), "</b></br>",
"población: ", format(County_Crash_geom$value, nsmall=0, big.mark=","), "<br>",
"choques promedio por año: ", round(County_Crash_geom$MeanCrashes,0), "</br>",
"choques promedio/año por cada 100.000 habitantes: ", round(County_Crash_geom$CrashesPerPopulation,0)), htmltools::HTML),
group = "Counties") %>%
addLegend(position = "bottomleft", pal = county_pal, values = County_Crash_geom$CrashesPerPopulation, group = "Counties", title = "Choques por año</br>(por 100,000 habitantes)") %>%
groupOptions(group = "Schools", zoomLevels = 13:20) %>%
groupOptions(group = "Crash Points", zoomLevels = 10:20) %>%
groupOptions(group ="Counties", zoomLevels = 1:9)
wisconsin_crash_map_es
saveWidget(wisconsin_crash_map_es, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_es.html",
selfcontained = TRUE,
title = "Mapa de Choques de Bicicletas y Peatones en Wisconsin")
title_es <- tags$div(
tag.map.title, HTML(paste0("Peatones y ciclistas involucrados en un choque</br>",
min(year(TOPS_data$date), na.rm = TRUE),
" - ",
max(year(TOPS_data$date), na.rm = TRUE)))
)
wisconsin_crash_map_es_title <- wisconsin_crash_map_es %>%
addControl(title_es, position = "topleft", className="map-title")
saveWidget(wisconsin_crash_map_es_title, file = "figures/dynamic_crash_maps/wisconsin_pedestrian_crash_map_es_title.html",
selfcontained = TRUE,
title = "Mapa de Choques de Bicicletas y Peatones en Wisconsin")

View file

@ -0,0 +1,188 @@
library(tidyverse)
library(sf)
#library(tmap)
library(leaflet)
library(RColorBrewer)
library(tidycensus)
library(htmltools)
library(magick)
library(htmlwidgets)
library(MASS)
library(raster)
## Load TOPS data ----
## To load TOPS data for the whole state for crashes involving bikes and pedestrians):
## Step 1 - download csv from the TOPS Data Retrieval Tool with the query: SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE BETWEEN TO_DATE('2023-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2023-DEC','YYYY-MM')) AND (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') ORDER BY C.DOCTNMBR
## Step 2 - include RACE1 and RACE2 for download in preferences
## Step 3 - save the csv in the "data" directory as crash-data-download_2023.csv
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data ----
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# Injury Severity Index and Color -----
injury_severity <- data.frame(InjSevName = c("Injury Severity Unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c(NA, "O", "C", "B", "A", "K"),
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% dplyr::select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% dplyr::select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% dplyr::select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)))
# Race names
race <- data.frame(race_name = c("Asian", "Black", "Indian","Hispanic","White"),
code = c("A", "B", "I", "H", "W"))
TOPS_data <- left_join(TOPS_data, race %>% dplyr::select(race_name, code), join_by(RACE1 == code)) %>% rename(race_name1 = race_name)
TOPS_data <- left_join(TOPS_data, race %>% dplyr::select(race_name, code), join_by(RACE2 == code)) %>% rename(race_name2 = race_name)
## make mutate TOPS_data
TOPS_data <- TOPS_data %>%
mutate(Year = year,
PedestrianInjurySeverity = ped_inj_name,
CrashDate = CRSHDATE,
CrashTime = CRSHTIME,
County = CNTYNAME,
Street = ONSTR,
CrossStreet = ATSTR) %>%
mutate(PedestrianAge = ifelse(ROLE1 %in% vuln_roles, age1, age2))
TOPS_geom <- st_as_sf(TOPS_data %>% filter(!is.na(latitude)), coords = c("longitude", "latitude"), crs = 4326)
## load school locations ----
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
WI_schools <- WI_schools %>%
filter(is.double(LAT),
LAT > 0) %>%
dplyr::select("SCHOOL", "DISTRICT", "SCHOOLTYPE", "COUNTY", "LAT", "LON")
school_symbol <- makeIcon(iconUrl = "other/school_FILL0_wght400_GRAD0_opsz24.png",
iconWidth = 24,
iconHeight = 24,
iconAnchorX = 12,
iconAnchorY = 12)
focus_columns <- c("PedestrianInjurySeverity", "CrashDate", "CrashTime", "County", "Street", "CrossStreet", "PedestrianAge", "Year", "vulnerable_role")
focus_county <- "MILWAUKEE"
WI_schools <- WI_schools %>% filter(COUNTY %in% str_to_title(focus_county))
# generate map with leaflet ----
Pedestrian_Crash_Data <- TOPS_data %>%
filter(CNTYNAME == focus_county,
!is.na(latitude)) %>%
dplyr::select(all_of(c(focus_columns, "longitude", "latitude")))
# generate density map ----
crash_density <- kde2d(Pedestrian_Crash_Data$longitude, Pedestrian_Crash_Data$latitude, n = 200)
crash_density <- raster(crash_density)
crash_density <- cut(crash_density, breaks = 10)
crash_density_poly <- rasterToPolygons(crash_density, dissolve = T)
density_pal <- colorNumeric(palette = "YlOrRd", domain = c(min(crash_density_poly$layer, na.rm = TRUE), max(crash_density_poly$layer, na.rm = TRUE)))
# add county census data ----
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
county_populations <- get_estimates(geography = "county", year = 2022, product = "population", state = "Wisconsin", geometry = TRUE) %>%
filter(variable == "POPESTIMATE") %>%
mutate(County = str_to_upper(str_replace(NAME, " County, Wisconsin", "")))
county_populations <- st_transform(county_populations, crs = 4326) %>% filter(County %in% focus_county)
milwaukee_crash_map <-
leaflet(options = leafletOptions(preferCanvas = TRUE)) %>%
addProviderTiles(providers$Stadia.AlidadeSmooth) %>%
addPolygons(data = county_populations,
color = "black",
weight = 1,
fill = FALSE,
group = "County Lines") %>%
addPolygons(data = crash_density_poly,
color = "black",
weight = 0,
opacity = 0.9,
group = "Heat Map",
fillColor = density_pal(crash_density_poly$layer))%>%
addMarkers(data = WI_schools,
lng=WI_schools$LON,
lat = WI_schools$LAT,
icon = school_symbol,
label = lapply(paste0("<b>", WI_schools$SCHOOL, " School</b></br>",
WI_schools$DISTRICT, " School District</br>",
WI_schools$SCHOOLTYPE), htmltools::HTML),
group = "Schools") %>%
addCircleMarkers(data = Pedestrian_Crash_Data,
lng=Pedestrian_Crash_Data$longitude,
lat=Pedestrian_Crash_Data$latitude,
fillColor=injury_severity_pal(Pedestrian_Crash_Data$PedestrianInjurySeverity),
radius=4,
stroke=TRUE,
color = "black",
weight = 1,
fillOpacity = 0.8,
label = lapply(paste0("<b>", str_to_title(replace_na(Pedestrian_Crash_Data$vulnerable_role, ""))," </b><br>",
Pedestrian_Crash_Data$CrashDate, "</br>",
Pedestrian_Crash_Data$PedestrianInjurySeverity, "</br>",
replace_na(Pedestrian_Crash_Data$vulnerable_role, ""), " age: ", ifelse(!is.na(Pedestrian_Crash_Data$PedestrianAge), Pedestrian_Crash_Data$PedestrianAge, "unknown age")), htmltools::HTML),
group = "Crash Points") %>%
addLegend(position = "bottomleft", labels = injury_severity$InjSevName, colors = injury_severity$color, group = "Crash Points", title = "Injury Severity") %>%
groupOptions(group = "Schools", zoomLevels = 15:20) %>%
groupOptions(group = "Crash Points", zoomLevels = 13:20) %>%
groupOptions(group = "County Lines", zoomLevels = 5:20) %>%
groupOptions(group = "Heat Map", zoomLevels = 5:13)
milwaukee_crash_map
saveWidget(milwaukee_crash_map, file = "figures/dynamic_crash_maps/milwaukee_pedestrian_crash_map.html", selfcontained = TRUE)

215
R/municipality_maps.R Normal file
View file

@ -0,0 +1,215 @@
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(ggnewscale)
library(RColorBrewer)
library(magick)
library(rsvg)
library(parallel)
library(tidycensus)
## add data from WiscTransPortal Crash Data Retrieval Facility ----
## query: SELECT *
## FROM DTCRPRD.SUMMARY_COMBINED C
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
## ORDER BY C.DOCTNMBR
## Load TOPS data ----
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# county index
counties <- data.frame(name = c("Dane", "Milwaukee"),
CNTYCODE = c(13, 40),
COUNTY = c("DANE", "MILWAUKEE"))
# Injury Severy Index and Color -------------------------------------------
# injury severity index
injury_severity <- data.frame(InjSevName = c("Injury severity unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c(NA, "O", "C", "B", "A", "K"),
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
# add bike or pedestrian roles ----
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)))
## load bike LTS networks
bike_lts <- as.list(NULL)
for(file in list.files("data/bike_lts")) {
county <- str_sub(file, 10, -9)
lts_run <- st_read(paste0("data/bike_lts/", file))
lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
bike_lts[[county]] <- lts_run
}
bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
color = c("#1a9641",
"#a6d96a",
"#fdae61",
"#d7191c",
"#d7191c"))
# register stadia API key ----
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
#options(ggmap.file_drawer = "basemaps")
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
# saveRDS(list(), file_drawer("index.rds"))
#readRDS(file_drawer("index.rds"))
#file_drawer("index.rds")
# load census api key ----
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
# load logo
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
## ---- generate charts/maps ----
## set parameters of run
#county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
#county_focus <- c("DANE")
county_focus <- "Rock"
municipality_geom <- st_read("data/WI_Cities,_Towns_and_Villages_January_2024.geojson")
municipality_focus <- c("Evansville")
#municipality_focus <- c("Monona", "Fitchburg")
#municipality_focus <- municipality_geom %>% filter(CNTY_NAME == county_focus) %>% pull(MCD_NAME)
for(municipality in municipality_focus) {
message(paste("***", municipality))
options(ggmap.file_drawer = paste0("basemaps/municipalities/", municipality))
dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
saveRDS(list(), file_drawer("index.rds"))
readRDS(file_drawer("index.rds"))
file_drawer("index.rds")
municipality_filtered <- municipality_geom %>% filter(CNTY_NAME == county_focus, MCD_NAME == municipality) %>% pull(geometry)
# create bounding box from school, 5km away.
bbox_poly <- st_transform(st_buffer(municipality_filtered, 1000), crs = 4326)
bbox <- st_bbox(bbox_poly)
bbox <- c(left = as.double(bbox[1]),
bottom = as.double(bbox[2]),
right = as.double(bbox[3]),
top = as.double(bbox[4]))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
# generate map
ggmap(basemap) +
labs(title = paste0(
# "Crashes between cars and youth (<18) pedestrians/bicyclists near ",
"Crashes between cars and pedestrians & bicyclists in ",
municipality),
subtitle = paste0(min(year(TOPS_data$date), na.rm = TRUE),
" - ",
max(year(TOPS_data$date), na.rm = TRUE)),
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
x = NULL,
y = NULL) +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
## add bike lts
geom_sf(data = bike_lts[[county]] %>% st_intersection(bbox_poly),
inherit.aes = FALSE,
aes(color = lts)) +
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
# add crash locations
new_scale_fill() +
geom_point(data = TOPS_data %>%
filter(ROLE1 %in% c("BIKE", "PED")
# & age1 < 18
| ROLE2 %in% c("BIKE", "PED")
# & age2 < 18
) %>%
filter(longitude >= as.double(bbox[1]),
latitude >= as.double(bbox[2]),
longitude <= as.double(bbox[3]),
latitude <= as.double(bbox[4])),
aes(x = longitude,
y = latitude,
fill = ped_inj_name),
shape = 23,
size = 3) +
scale_fill_manual(values = setNames(injury_severity$color, injury_severity$InjSevName), name = "Crash Severity") +
geom_sf(data = municipality_filtered,
inherit.aes = FALSE,
color = 'black',
fill = NA,
linewidth = 1) +
annotation_raster(logo,
# Position adjustments here using plot_box$max/min/range
ymin = bbox['top'] - (bbox['top']-bbox['bottom']) * 0.16,
ymax = bbox['top'],
xmin = bbox['right'] + (bbox['right']-bbox['left']) * 0.05,
xmax = bbox['right'] + (bbox['right']-bbox['left']) * 0.15) +
coord_sf(clip = "off")
ggsave(file = paste0("figures/municipalities/",
municipality,
".pdf"),
#title = paste0(municipality, " Youth Pedestrian/Bike crashes"),
title = paste0(municipality, " All Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
}

441
R/school_maps.R Normal file
View file

@ -0,0 +1,441 @@
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(ggnewscale)
library(RColorBrewer)
library(magick)
library(rsvg)
library(parallel)
## add data from WiscTransPortal Crash Data Retrieval Facility ----
## query: SELECT *
## FROM DTCRPRD.SUMMARY_COMBINED C
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
## ORDER BY C.DOCTNMBR
## Load TOPS data ----
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# county index
counties <- data.frame(name = c("Dane", "Milwaukee"),
CNTYCODE = c(13, 40),
COUNTY = c("DANE", "MILWAUKEE"))
# Injury Severity Index and Color -------------------------------------------
# injury severity index
injury_severity <- data.frame(InjSevName = c("Injury severity unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c(NA, "O", "C", "B", "A", "K"),
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
#injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
# add bike or pedestrian roles ----
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)))
# ---- add additional data
## add school enrollment data
enrollment <- read_csv(file = "data/Schools/Enrollement_2022-2023/enrollment_by_gradelevel_certified_2022-23.csv",
col_types = "ccccccccccccciid")
enrollment_wide <-
enrollment %>%
mutate(district_school = paste0(DISTRICT_CODE, SCHOOL_CODE),
variable_name = paste0(GROUP_BY, "__", GROUP_BY_VALUE)) %>%
mutate(variable_name = str_replace_all(variable_name, "[ ]", "_")) %>%
pivot_wider(id_cols = c(district_school, GRADE_LEVEL, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND), names_from = variable_name, values_from = PERCENT_OF_GROUP) %>%
group_by(district_school, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND) %>%
summarise_at(vars("Disability__Autism":"Migrant_Status__[Data_Suppressed]"), mean, na.rm = TRUE)
district_info <- data.frame(name = c("Madison Metropolitan", "Milwaukee"),
code = c("3269","3619"),
walk_boundary_hs = c(1.5, 2),
walk_boundary_ms = c(1.5, 2),
walk_boundary_es = c(1.5, 1))
## load school locations
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
WI_schools <- left_join(WI_schools %>% mutate(district_school = paste0(SDID, SCH_CODE)),
enrollment_wide,
join_by(district_school))
## load bike LTS networks
bike_lts <- as.list(NULL)
for(file in list.files("data/bike_lts")) {
county <- str_sub(file, 10, -9)
lts_run <- st_read(paste0("data/bike_lts/", file))
lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
bike_lts[[county]] <- lts_run
}
bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
color = c("#1a9641",
"#a6d96a",
"#fdae61",
"#d7191c",
"#d7191c"))
# register stadia API key ----
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
#options(ggmap.file_drawer = "basemaps")
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
# saveRDS(list(), file_drawer("index.rds"))
#readRDS(file_drawer("index.rds"))
#file_drawer("index.rds")
# load census api key ----
#census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
# load logo
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
## ---- generate charts/maps ----
## set parameters of run
#county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
#county_focus <- c("DANE")
county_focus <- c("DANE")
school_type_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus)) %>% pull(SCHOOLTYPE))
#school_type_focus <- c("High School")
#district_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus), SCHOOLTYPE %in% school_type_focus, !is.na(DISTRICT_NAME)) %>% pull(DISTRICT_NAME))
district_focus <- c("Madison Metropolitan")
school_number <- length(unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus),
SCHOOLTYPE %in% school_type_focus,
DISTRICT_NAME %in% district_focus) %>%
pull(district_school)))
## * generate county charts ----
for(county in county_focus) {
message(county)
TOPS_data %>%
filter(CNTYNAME %in% county) %>%
filter(ROLE1 %in% vuln_roles & age1 < 18 | ROLE2 %in% vuln_roles & age2 < 18) %>%
group_by(year) %>% summarise(count = n_distinct(DOCTNMBR)) %>%
ggplot() +
geom_col(aes(x = year,
y = count),
fill = "darkred") +
scale_y_continuous(expand = expansion(mult = c(0,0.07))) +
labs(title = paste0("Pedestrians/bicyclists under 18 years old hit by cars in ",
str_to_title(county),
" County"),
x = "Year",
y = "Number of crashes",
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"))
ggsave(file = paste0("figures/school_maps/Crash Maps/",
str_to_title(county),
" County/_",
str_to_title(county),
" County_year.pdf"),
title = paste0(county, " County Youth Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
# # generate map for county
# county_data <- WI_schools %>% filter(CTY_DIST %in% str_to_title(county))
# bbox <- st_bbox(st_transform(st_buffer(county_data %>% pull(geom), dist = 4000), crs = 4326))
# bbox <- c(left = as.double(bbox[1]), bottom = as.double(bbox[2]), right = as.double(bbox[3]), top = as.double(bbox[4]))
#
# #get basemap
# basemap <- get_stadiamap(bbox = bbox, zoom = 12, maptype = "stamen_toner_lite")
#
# # generate map
# ggmap(basemap) +
# labs(title = paste0("Crashes between cars and youth (under 18) pedestrians/bicyclists in ",
# str_to_title(county),
# " County"),
# subtitle = paste0(min(year(TOPS_data$date), na.rm = TRUE), " - ", max(year(TOPS_data$date), na.rm = TRUE)),
# caption = "data from Wisconsin DOT, UW TOPS Laboratory, Wisconsin DPI, and OpenStreetMap",
# x = NULL,
# y = NULL) +
# theme(axis.text=element_blank(),
# axis.ticks=element_blank()) +
#
# # add crash heatmap
# # stat_density_2d(data = TOPS_data %>%
# # filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18),
# # inherit.aes = FALSE,
# # geom = "polygon",
# # aes(fill = after_stat(level),
# # x = longitude,
# # y = latitude),
# # alpha = 0.2,
# # color = NA,
# # na.rm = TRUE,
# # bins = 12,
# # n = 300) +
# # scale_fill_distiller(type = "div", palette = "YlOrRd", guide = "none", direction = 1) +
#
# # add crashes
# new_scale_color() +
# geom_point(data = TOPS_data %>%
# filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18) %>%
# filter(longitude >= as.double(bbox[1]),
# latitude >= as.double(bbox[2]),
# longitude <= as.double(bbox[3]),
# latitude <= as.double(bbox[4])),
# aes(x = longitude,
# y = latitude,
# color = InjSevName),
# shape = 18,
# size = 1) +
# scale_color_manual(values = injury_severity$color, name = "Crash Severity")
#
# # add school location
# # new_scale_color() +
# # geom_sf(data = st_transform(WI_schools, crs = 4326),
# # inherit.aes = FALSE,
# # aes(color = "school"),
# # size = 2,
# # shape = 0) +
# # scale_color_manual(values = "black", name = NULL)
#
# ggsave(file = paste0("figures/school_maps/Crash Maps/",
# str_to_title(county), " County/_",
# str_to_title(county), " County.pdf"),
# title = paste0(str_to_title(county), " County Youth Pedestrian/Bike crashes"),
# device = pdf,
# height = 8.5,
# width = 11,
# units = "in",
# create.dir = TRUE)
}
# * generate individual school maps ----
options(osrm.server = "http://127.0.0.1:5000/")
options(osrm.profile = "walk")
i <- 0
#districts_done <- read_csv(file = "other/districts_done.csv")
#district_focus <- district_focus[! district_focus %in% districts_done$district]
for(district in district_focus) {
message(paste("***", district, "School District |"))
options(ggmap.file_drawer = paste0("basemaps/districts/", district))
dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
saveRDS(list(), file_drawer("index.rds"))
readRDS(file_drawer("index.rds"))
file_drawer("index.rds")
for(school in WI_schools %>%
filter(DISTRICT_NAME %in% district,
SCHOOLTYPE %in% school_type_focus,
!st_is_empty(geom)) %>%
pull(district_school)) {
school_data <- WI_schools %>% filter(district_school == school)
i <- i + 1
message(paste(school_data %>% pull(SCHOOL_NAME), "-", district, "School District", "-", school_data %>% pull(CTY_DIST), "County |", i, "/", school_number, "|", round(i/school_number*100, 2), "%"))
#find walk boundary distance for school
if(length(which(district_info$name == district)) > 0) {
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% "High School",
walk_boundary_mi <- district_info$walk_boundary_hs[district_info$name == district],
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Junior High School", "Middle School"),
walk_boundary_mi <- district_info$walk_boundary_ms[district_info$name == district],
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Combined Elementary/Secondary School", "Elementary School"),
walk_boundary_mi <- district_info$walk_boundary_es[district_info$name == district],
walk_boundary <- 2)))
} else {
walk_boundary_mi <- 2
}
walk_boundary_m <- walk_boundary_mi * 1609
walk_boundary_poly <- fill_holes(st_make_valid(osrmIsodistance(
loc = st_transform(school_data %>% pull(geom), crs = 4326),
breaks = c(walk_boundary_m),
res = 80)
), units::set_units(1, km^2))
# create bounding box from school, 5km away.
bbox <- st_bbox(st_transform(st_buffer(school_data %>% pull(geom), dist = walk_boundary_m + 500), crs = 4326))
bbox <- c(left = as.double(bbox[1]),
bottom = as.double(bbox[2]),
right = as.double(bbox[3]),
top = as.double(bbox[4]))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
# generate map
ggmap(basemap) +
labs(title = paste0(
"Crashes between cars and youth (<18) pedestrians/bicyclists near ",
# "Crashes between cars and all pedestrians/bicyclists near ",
school_data %>% pull(SCHOOL_NAME),
" School"),
subtitle = paste0(school_data %>% pull(DISTRICT_NAME),
" School District | ",
min(year(TOPS_data$date), na.rm = TRUE),
" - ",
max(year(TOPS_data$date), na.rm = TRUE)),
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
x = NULL,
y = NULL) +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
## add bike lts
# geom_sf(data = bike_lts[[county]],
# inherit.aes = FALSE,
# aes(color = lts)) +
# scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
# add crash locations
new_scale_fill() +
geom_point(data = TOPS_data %>%
filter(ROLE1 %in% c("BIKE", "PED")
& age1 < 18
| ROLE2 %in% c("BIKE", "PED")
& age2 < 18
) %>%
filter(longitude >= as.double(bbox[1]),
latitude >= as.double(bbox[2]),
longitude <= as.double(bbox[3]),
latitude <= as.double(bbox[4])),
aes(x = longitude,
y = latitude,
fill = ped_inj_name),
shape = 23,
size = 3) +
scale_fill_manual(values = setNames(injury_severity$color, injury_severity$InjSevName), name = "Crash Severity") +
# add walk boundary
new_scale_color() +
new_scale_fill() +
geom_sf(data = walk_boundary_poly,
inherit.aes = FALSE,
aes(color = paste0(walk_boundary_mi, " mile walking boundary")),
fill = NA,
linewidth = 1) +
scale_color_manual(values = "black", name = NULL) +
# add school location
# geom_sf(data = st_transform(school_data, crs = 4326), inherit.aes = FALSE) +
annotation_raster(school_symbol,
# Position adjustments here using plot_box$max/min/range
ymin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] - 0.001,
ymax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] + 0.001,
xmin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] - 0.0015,
xmax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] + 0.0015) +
geom_sf_label(data = st_transform(school_data, crs = 4326),
inherit.aes = FALSE,
mapping = aes(label = paste(SCHOOL_NAME, "School")),
nudge_y = 0.0015,
label.size = 0.04,
size = 2) +
annotation_raster(logo,
# Position adjustments here using plot_box$max/min/range
ymin = bbox['top'] - (bbox['top']-bbox['bottom']) * 0.16,
ymax = bbox['top'],
xmin = bbox['right'] + (bbox['right']-bbox['left']) * 0.05,
xmax = bbox['right'] + (bbox['right']-bbox['left']) * 0.20) +
coord_sf(clip = "off")
ggsave(file = paste0("figures/school_maps/Crash Maps/",
str_to_title(school_data %>% pull(CTY_DIST)),
" County/",
school_data %>% pull(DISTRICT_NAME),
" School District/",
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
"s/",
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
# " School_all.pdf"),
" School.pdf"),
title = paste0(school_data %>% pull(SCHOOL), " Youth Pedestrian/Bike crashes"),
#title = paste0(school_data %>% pull(SCHOOL), " All Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
}
# districts_done <- bind_rows(districts_done, data.frame(district = c(district)))
# write_csv(districts_done, file = "other/districts_done.csv")
}
# double check that all schools have a map ----
double_check <- list(NULL)
for(school in WI_schools$district_school) {
school_data <- WI_schools %>% filter(district_school %in% school)
school_check <- data.frame(district_school = c(school),
exists = c(file.exists(paste0("figures/school_maps/Crash Maps/",
str_to_title(school_data %>% pull(CTY_DIST)),
" County/",
school_data %>% pull(DISTRICT_NAME),
" School District/",
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
"s/",
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
#" School.pdf"))))
" School_all.pdf"))))
double_check[[school]] <- school_check
}
double_check <- bind_rows(double_check)
unique(WI_schools %>%
filter(district_school %in% (double_check %>%
filter(exists == FALSE) %>%
pull(district_school)),
!st_is_empty(geom)) %>%
pull(DISTRICT_NAME))

449
R/school_maps_parallel.R Normal file
View file

@ -0,0 +1,449 @@
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(ggnewscale)
library(RColorBrewer)
library(magick)
library(rsvg)
library(parallel)
## add data from WiscTransPortal Crash Data Retrieval Facility ----
## query: SELECT *
## FROM DTCRPRD.SUMMARY_COMBINED C
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
## ORDER BY C.DOCTNMBR
## Load TOPS data ----
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
TOPS_data[[file]] <- csv_run
}
rm(csv_run, file, year)
TOPS_data <- bind_rows(TOPS_data)
## clean up data
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
# county index
counties <- data.frame(name = c("Dane", "Milwaukee"),
CNTYCODE = c(13, 40),
COUNTY = c("DANE", "MILWAUKEE"))
# Injury Severy Index and Color -------------------------------------------
# injury severity index
injury_severity <- data.frame(InjSevName = c("Injury severity unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c(NA, "O", "C", "B", "A", "K"),
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName1 = InjSevName)
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(InjSevName2 = InjSevName)
# add bike or pedestrian roles ----
bike_roles <- c("BIKE", "O BIKE")
ped_roles <- c("PED", "O PED", "PED NO")
vuln_roles <- c(bike_roles, ped_roles)
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
INJSVR1,
ifelse(ROLE2 %in% vuln_roles,
INJSVR2,
NA)))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
rename(ped_inj_name = InjSevName)
# bike or ped
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
"Bicyclist",
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
"Pedestrian",
NA)))
# ---- add additional data
## add school enrollment data
enrollment <- read_csv(file = "data/Schools/Enrollement_2022-2023/enrollment_by_gradelevel_certified_2022-23.csv",
col_types = "ccccccccccccciid")
enrollment_wide <-
enrollment %>%
mutate(district_school = paste0(DISTRICT_CODE, SCHOOL_CODE),
variable_name = paste0(GROUP_BY, "__", GROUP_BY_VALUE)) %>%
mutate(variable_name = str_replace_all(variable_name, "[ ]", "_")) %>%
pivot_wider(id_cols = c(district_school, GRADE_LEVEL, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND), names_from = variable_name, values_from = PERCENT_OF_GROUP) %>%
group_by(district_school, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND) %>%
summarise_at(vars("Disability__Autism":"Migrant_Status__[Data_Suppressed]"), mean, na.rm = TRUE)
district_info <- data.frame(name = c("Madison Metropolitan", "Milwaukee"),
code = c("3269","3619"),
walk_boundary_hs = c(1.5, 2),
walk_boundary_ms = c(1.5, 2),
walk_boundary_es = c(1.5, 1))
## load school locations
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
WI_schools <- left_join(WI_schools %>% mutate(district_school = paste0(SDID, SCH_CODE)),
enrollment_wide,
join_by(district_school))
## load bike LTS networks
# bike_lts <- as.list(NULL)
# for(file in list.files("data/bike_lts")) {
# county <- str_sub(file, 10, -9)
# lts_run <- st_read(paste0("data/bike_lts/", file))
# lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
# bike_lts[[county]] <- lts_run
# }
# bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
# color = c("#1a9641",
# "#a6d96a",
# "#fdae61",
# "#d7191c",
# "#d7191c"))
# register stadia API key ----
register_stadiamaps(key = read_file(file = "api_keys/stadia_api_key"))
#options(ggmap.file_drawer = "data/basemaps")
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
# saveRDS(list(), file_drawer("index.rds"))
#readRDS(file_drawer("index.rds"))
#file_drawer("index.rds")
# load census api key ----
#census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
# load logo
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
## ---- generate charts/maps ----
## set parameters of run
county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
#county_focus <- c("DANE")
#county_focus <- c("MILWAUKEE")
#county_focus <- c("WINNEBAGO")
#county_focus <- c("DANE", "MILWAUKEE", "BROWN")
#county_focus <- c("VILAS", "BROWN")
#county_focus <- c("BROWN")
school_type_focus <- unique(WI_schools %>% pull(SCHOOLTYPE))
#school_type_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus)) %>% pull(SCHOOLTYPE))
#school_type_focus <- c("High School")
district_focus <- unique(WI_schools %>% pull(DISTRICT_NAME))
#district_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus), SCHOOLTYPE %in% school_type_focus, !is.na(DISTRICT_NAME)) %>% pull(DISTRICT_NAME))
#district_focus <- c("Madison Metropolitan")
#district_focus <- c("Milwaukee")
school_number <- length(unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus),
SCHOOLTYPE %in% school_type_focus,
DISTRICT_NAME %in% district_focus) %>%
pull(district_school)))
## * generate county charts ----
for(county in county_focus) {
message(county)
TOPS_data %>%
filter(CNTYNAME %in% county) %>%
filter(ROLE1 %in% vuln_roles & age1 < 18 | ROLE2 %in% vuln_roles & age2 < 18) %>%
group_by(year) %>% summarise(count = n_distinct(DOCTNMBR)) %>%
ggplot() +
geom_col(aes(x = year,
y = count),
fill = "darkred") +
scale_y_continuous(expand = expansion(mult = c(0,0.07))) +
labs(title = paste0("Pedestrians/bicyclists under 18 years old hit by cars in ",
str_to_title(county),
" County"),
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
x = "Year",
y = "Number of crashes")
ggsave(file = paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
str_to_title(county),
" County/_",
str_to_title(county),
" County_year.pdf"),
title = paste0(county, " County Youth Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
# # generate map for county
# county_data <- WI_schools %>% filter(CTY_DIST %in% str_to_title(county))
# bbox <- st_bbox(st_transform(st_buffer(county_data %>% pull(geom), dist = 4000), crs = 4326))
# bbox <- c(left = as.double(bbox[1]), bottom = as.double(bbox[2]), right = as.double(bbox[3]), top = as.double(bbox[4]))
#
# #get basemap
# basemap <- get_stadiamap(bbox = bbox, zoom = 12, maptype = "stamen_toner_lite")
#
# # generate map
# ggmap(basemap) +
# labs(title = paste0("Crashes between cars and youth (under 18) pedestrians/bicyclists in ",
# str_to_title(county),
# " County"),
# subtitle = paste0(min(year(TOPS_data$date), na.rm = TRUE), " - ", max(year(TOPS_data$date), na.rm = TRUE)),
# caption = "data from Wisconsin DOT, UW TOPS Laboratory, Wisconsin DPI, and OpenStreetMap",
# x = NULL,
# y = NULL) +
# theme(axis.text=element_blank(),
# axis.ticks=element_blank()) +
#
# # add crash heatmap
# # stat_density_2d(data = TOPS_data %>%
# # filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18),
# # inherit.aes = FALSE,
# # geom = "polygon",
# # aes(fill = after_stat(level),
# # x = longitude,
# # y = latitude),
# # alpha = 0.2,
# # color = NA,
# # na.rm = TRUE,
# # bins = 12,
# # n = 300) +
# # scale_fill_distiller(type = "div", palette = "YlOrRd", guide = "none", direction = 1) +
#
# # add crashes
# new_scale_color() +
# geom_point(data = TOPS_data %>%
# filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18) %>%
# filter(longitude >= as.double(bbox[1]),
# latitude >= as.double(bbox[2]),
# longitude <= as.double(bbox[3]),
# latitude <= as.double(bbox[4])),
# aes(x = longitude,
# y = latitude,
# color = InjSevName),
# shape = 18,
# size = 1) +
# scale_color_manual(values = injury_severity$color, name = "Crash Severity")
#
# # add school location
# # new_scale_color() +
# # geom_sf(data = st_transform(WI_schools, crs = 4326),
# # inherit.aes = FALSE,
# # aes(color = "school"),
# # size = 2,
# # shape = 0) +
# # scale_color_manual(values = "black", name = NULL)
#
# ggsave(file = paste0("figures/crash_maps/Crash Maps/",
# str_to_title(county), " County/_",
# str_to_title(county), " County.pdf"),
# title = paste0(str_to_title(county), " County Youth Pedestrian/Bike crashes"),
# device = pdf,
# height = 8.5,
# width = 11,
# units = "in",
# create.dir = TRUE)
}
# * generate individual school maps ----
options(osrm.server = "http://127.0.0.1:5000/")
options(osrm.profile = "walk")
districts_done <- read_csv(file = "other/districts_done.csv")
district_focus <- district_focus[! district_focus %in% districts_done$district]
generate_school_maps <- function(district) {
message(paste("***", district, "School District |", match(district, district_focus), "/", length(district_focus)))
options(ggmap.file_drawer = paste0("~/temp/wi_crashes/basemaps/districts/", district))
dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
saveRDS(list(), file_drawer("index.rds"))
readRDS(file_drawer("index.rds"))
file_drawer("index.rds")
for(school in WI_schools %>%
filter(DISTRICT_NAME %in% district,
SCHOOLTYPE %in% school_type_focus,
!st_is_empty(geom)) %>%
pull(district_school)) {
school_data <- WI_schools %>% filter(district_school == school)
message(paste(school_data %>% pull(SCHOOL_NAME), "-", district, "School District", "-", school_data %>% pull(CTY_DIST), "County"))
#find walk boundary distance for school
if(length(which(district_info$name == district)) > 0) {
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% "High School",
walk_boundary_mi <- district_info$walk_boundary_hs[district_info$name == district],
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Junior High School", "Middle School"),
walk_boundary_mi <- district_info$walk_boundary_ms[district_info$name == district],
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Combined Elementary/Secondary School", "Elementary School"),
walk_boundary_mi <- district_info$walk_boundary_es[district_info$name == district],
walk_boundary <- 2)))
} else {
walk_boundary_mi <- 2
}
walk_boundary_m <- walk_boundary_mi * 1609
walk_boundary_poly <- fill_holes(st_make_valid(osrmIsodistance(
loc = st_transform(school_data %>% pull(geom), crs = 4326),
breaks = c(walk_boundary_m),
res = 80)
), units::set_units(1, km^2))
# create bounding box from school, 5km away.
bbox <- st_bbox(st_transform(st_buffer(school_data %>% pull(geom), dist = walk_boundary_m + 500), crs = 4326))
bbox <- c(left = as.double(bbox[1]),
bottom = as.double(bbox[2]),
right = as.double(bbox[3]),
top = as.double(bbox[4]))
#get basemap
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
# generate map
ggmap(basemap) +
labs(title = paste0("Crashes between cars and youth (<18) pedestrians/bicyclists near ",
school_data %>% pull(SCHOOL_NAME),
" School"),
subtitle = paste0(school_data %>% pull(DISTRICT_NAME),
" School District | ",
min(year(TOPS_data$date), na.rm = TRUE),
" - ",
max(year(TOPS_data$date), na.rm = TRUE)),
caption = paste0("crash data from UW TOPS lab - retrieved ",
strftime(retrieve_date, format = "%m/%Y"),
" per direction of the WisDOT Bureau of Transportation Safety",
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
x = NULL,
y = NULL) +
theme(axis.text=element_blank(),
axis.ticks=element_blank(),
plot.caption = element_text(color = "grey")) +
## add bike lts
#geom_sf(data = bike_lts[[county]],
# inherit.aes = FALSE,
# aes(color = lts)) +
#scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
# add crash locations
new_scale_fill() +
geom_point(data = TOPS_data %>%
filter(ROLE1 %in% vuln_roles
& age1 < 18
| ROLE2 %in% vuln_roles
& age2 < 18
) %>%
filter(longitude >= as.double(bbox[1]),
latitude >= as.double(bbox[2]),
longitude <= as.double(bbox[3]),
latitude <= as.double(bbox[4])),
aes(x = longitude,
y = latitude,
fill = ped_inj_name),
shape = 23,
size = 3) +
scale_fill_manual(values = setNames(as.character(injury_severity$color), injury_severity$InjSevName), name = "Crash Severity") +
# add walk boundary
new_scale_color() +
new_scale_fill() +
geom_sf(data = walk_boundary_poly,
inherit.aes = FALSE,
aes(color = paste0(walk_boundary_mi, " mile walking boundary")),
fill = NA,
linewidth = 1) +
scale_color_manual(values = "black", name = NULL) +
# add school location
# geom_sf(data = st_transform(school_data, crs = 4326), inherit.aes = FALSE) +
annotation_raster(school_symbol,
# Position adjustments here using plot_box$max/min/range
ymin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] - 0.001,
ymax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] + 0.001,
xmin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] - 0.0015,
xmax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] + 0.0015) +
geom_sf_label(data = st_transform(school_data, crs = 4326),
inherit.aes = FALSE,
mapping = aes(label = paste(SCHOOL_NAME, "School")),
nudge_y = 0.0015,
label.size = 0.04,
size = 2) +
annotation_raster(logo,
# Position adjustments here using plot_box$max/min/range
ymin = bbox['top'] - (bbox['top']-bbox['bottom']) * 0.16,
ymax = bbox['top'],
xmin = bbox['right'] + (bbox['right']-bbox['left']) * 0.05,
xmax = bbox['right'] + (bbox['right']-bbox['left']) * 0.20) +
coord_sf(clip = "off")
ggsave(file = paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
str_to_title(school_data %>% pull(CTY_DIST)),
" County/",
school_data %>% pull(DISTRICT_NAME),
" School District/",
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
"s/",
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
" School.pdf"),
title = paste0(school_data %>% pull(SCHOOL), " Youth Pedestrian/Bike crashes"),
device = pdf,
height = 8.5,
width = 11,
units = "in",
create.dir = TRUE)
}
districts_done <<- c(districts_done, district)
}
## generate maps in parallel ----
mclapply(district_focus,
generate_school_maps,
mc.cores = 10,
mc.cleanup = TRUE,
mc.preschedule = TRUE,
mc.silent = FALSE)
# double check that all schools have a map ----
double_check <- list(NULL)
for(school in WI_schools$district_school) {
school_data <- WI_schools %>% filter(district_school %in% school)
school_check <- data.frame(district_school = c(school),
exists = c(file.exists(paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
str_to_title(school_data %>% pull(CTY_DIST)),
" County/",
school_data %>% pull(DISTRICT_NAME),
" School District/",
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
"s/",
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
" School.pdf"))))
double_check[[school]] <- school_check
}
double_check <- bind_rows(double_check)
unique(WI_schools %>%
filter(district_school %in% (double_check %>%
filter(exists == FALSE) %>%
pull(district_school)),
!st_is_empty(geom)) %>%
pull(DISTRICT_NAME))