removed .Rhistory

This commit is contained in:
Ben Varick 2024-04-03 13:34:39 -05:00
parent 18a527b165
commit ba4fb8b6c8
Signed by: ben
SSH Key Fingerprint: SHA256:jWnpFDAcacYM5aPFpYRqlsamlDyKNpSj3jj+k4ojtUo

155
.Rhistory
View File

@ -1,155 +0,0 @@
library(tidyverse)
library(sf)
library(tmap)
remotes::install_github('r-tmap/tmap')
library(tidyverse)
library(ggmap)
library(sf)
library(osrm)
library(smoothr)
library(ggnewscale)
library(RColorBrewer)
library(magick)
library(rsvg)
library(parallel)
## add data from WiscTransPortal Crash Data Retrieval Facility ----
## query: SELECT *
## FROM DTCRPRD.SUMMARY_COMBINED C
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
## ORDER BY C.DOCTNMBR
## Load TOPS data ----
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
TOPS_data <- as.list(NULL)
for (file in list.files(path = "data/TOPS", pattern = "crash-data-download")) {
message(paste("importing data from file: ", file))
year <- substr(file, 21, 24)
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
TOPS_data[[file]] <- csv_run
}
rm(csv_run)
TOPS_data <- bind_rows(TOPS_data)
## clean up data
TOPS_data <- TOPS_data %>%
mutate(date = mdy(CRSHDATE),
age1 = as.double(AGE1),
age2 = as.double(AGE2),
latitude = as.double(LATDECDG),
longitude = as.double(LONDECDG)) %>%
mutate(month = month(date, label = TRUE),
year = as.factor(year(date)))
# county index
counties <- data.frame(name = c("Dane", "Milwaukee"),
CNTYCODE = c(13, 40),
COUNTY = c("DANE", "MILWAUKEE"))
# Injury Severy Index and Color -------------------------------------------
# injury severity index
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
code = c("O", "C", "B", "A", "K"),
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR == code)) %>% mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName))
# ---- add additional data
## add school enrollment data
enrollment <- read_csv(file = "data/Schools/Enrollement_2022-2023/enrollment_by_gradelevel_certified_2022-23.csv",
col_types = "ccccccccccccciid")
enrollment_wide <-
enrollment %>%
mutate(district_school = paste0(DISTRICT_CODE, SCHOOL_CODE),
variable_name = paste0(GROUP_BY, "__", GROUP_BY_VALUE)) %>%
mutate(variable_name = str_replace_all(variable_name, "[ ]", "_")) %>%
pivot_wider(id_cols = c(district_school, GRADE_LEVEL, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND), names_from = variable_name, values_from = PERCENT_OF_GROUP) %>%
group_by(district_school, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND) %>%
summarise_at(vars("Disability__Autism":"Migrant_Status__[Data_Suppressed]"), mean, na.rm = TRUE)
district_info <- data.frame(name = c("Madison Metropolitan", "Milwaukee"),
code = c("3269","3619"),
walk_boundary_hs = c(1.5, 2),
walk_boundary_ms = c(1.5, 2),
walk_boundary_es = c(1.5, 1))
## load school locations
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
WI_schools <- left_join(WI_schools %>% mutate(district_school = paste0(SDID, SCH_CODE)),
enrollment_wide,
join_by(district_school))
## load bike LTS networks
# bike_lts <- as.list(NULL)
# for(file in list.files("data/bike_lts")) {
# county <- str_sub(file, 10, -9)
# lts_run <- st_read(paste0("data/bike_lts/", file))
# lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
# bike_lts[[county]] <- lts_run
# }
# bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
# color = c("#1a9641",
# "#a6d96a",
# "#fdae61",
# "#d7191c",
# "#d7191c"))
# register stadia API key ----
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
#options(ggmap.file_drawer = "data/basemaps")
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
# saveRDS(list(), file_drawer("index.rds"))
#readRDS(file_drawer("index.rds"))
#file_drawer("index.rds")
# load census api key ----
#census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
# load logo
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
## ---- generate charts/maps ----
## set parameters of run
county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
#county_focus <- c("DANE")
#county_focus <- c("MILWAUKEE")
#county_focus <- c("WINNEBAGO")
#county_focus <- c("DANE", "MILWAUKEE", "BROWN")
#county_focus <- c("VILAS", "BROWN")
#county_focus <- c("BROWN")
school_type_focus <- unique(WI_schools %>% pull(SCHOOLTYPE))
#school_type_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus)) %>% pull(SCHOOLTYPE))
#school_type_focus <- c("High School")
district_focus <- unique(WI_schools %>% pull(DISTRICT_NAME))
#district_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus), SCHOOLTYPE %in% school_type_focus, !is.na(DISTRICT_NAME)) %>% pull(DISTRICT_NAME))
#district_focus <- c("Madison Metropolitan")
#district_focus <- c("Milwaukee")
#district_focus <- c("Charter")
#district_focus <- c("Madison Metropolitan", "Milwaukee")
#district_focus <- c("Middleton-Cross Plains Area")
#district_focus <- c("Oregon")
# WI_schools <- st_as_sf(
# data.frame(SCHOOL = c("Escuela Verde"),
# SCHOOLTYPE = c("High School"),
# CTY_DIST = c("Milwaukee"),
# DISTRICT_NAME = c("Charter"),
# district_school = c("001001"),
# latitude = c(43.02387627250446),
# longitude = c(-87.95981501028392)
# ), coords = c("longitude", "latitude"), crs = 4326) %>% mutate(geom = geometry)
school_number <- length(unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus),
SCHOOLTYPE %in% school_type_focus,
DISTRICT_NAME %in% district_focus) %>%
pull(district_school)))
# double check that all schools have a map ----
double_check <- list(NULL)
for(school in WI_schools$district_school) {
school_data <- WI_schools %>% filter(district_school %in% school)
school_check <- data.frame(district_school = c(school),
exists = c(file.exists(paste0("~/temp/figures/crash_maps/Crash Maps/",
str_to_title(school_data %>% pull(CTY_DIST)),
" County/",
school_data %>% pull(DISTRICT_NAME),
" School District/",
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
"s/",
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
" School.pdf"))))
double_check[[school]] <- school_check
}
double_check <- bind_rows(double_check)
unique(WI_schools %>%
filter(district_school %in% (double_check %>%
filter(exists == FALSE) %>%
pull(district_school)),
!st_is_empty(geom)) %>%
pull(DISTRICT_NAME))