106 lines
4.5 KiB
Plaintext
106 lines
4.5 KiB
Plaintext
|
---
|
||
|
title: "TOPS data process"
|
||
|
output:
|
||
|
html_document:
|
||
|
toc: true
|
||
|
toc_depth: 5
|
||
|
toc_float:
|
||
|
collapsed: false
|
||
|
smooth_scroll: true
|
||
|
editor_options:
|
||
|
chunk_output_type: console
|
||
|
---
|
||
|
|
||
|
|
||
|
# Input Data & Configuration
|
||
|
|
||
|
## Libraries
|
||
|
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||
|
date()
|
||
|
rm(list=ls())
|
||
|
library(tidyverse)
|
||
|
```
|
||
|
|
||
|
## Compile TOPS data from multiple years
|
||
|
```{r topsdata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||
|
## add data from WiscTransPortal Crash Data Retrieval Facility ----
|
||
|
## query: SELECT *
|
||
|
## FROM DTCRPRD.SUMMARY_COMBINED C
|
||
|
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
|
||
|
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
|
||
|
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
|
||
|
## ORDER BY C.DOCTNMBR
|
||
|
|
||
|
## Load TOPS data ----
|
||
|
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
|
||
|
TOPS_data <- as.list(NULL)
|
||
|
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
||
|
message(paste("importing data from file: ", file))
|
||
|
year <- substr(file, 21, 24)
|
||
|
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
||
|
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
|
||
|
TOPS_data[[file]] <- csv_run
|
||
|
}
|
||
|
rm(csv_run, file, year)
|
||
|
TOPS_data <- bind_rows(TOPS_data)
|
||
|
```
|
||
|
|
||
|
## Clean up data
|
||
|
```{r cleandata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||
|
TOPS_data <- TOPS_data %>%
|
||
|
mutate(date = ymd(CRSHDATE),
|
||
|
age1 = as.double(AGE1),
|
||
|
age2 = as.double(AGE2),
|
||
|
latitude = as.double(LATDECDG),
|
||
|
longitude = as.double(LONDECDG)) %>%
|
||
|
mutate(month = month(date, label = TRUE),
|
||
|
year = as.factor(year(date)))
|
||
|
|
||
|
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
|
||
|
```
|
||
|
|
||
|
## Add injury severity index and assign bike/ped roles
|
||
|
```{r injuryseverity, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||
|
# Injury Severity Index and Color -------------------------------------------
|
||
|
# injury severity index
|
||
|
injury_severity <- data.frame(InjSevName = c("Injury severity unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
||
|
code = c(NA, "O", "C", "B", "A", "K"),
|
||
|
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
||
|
|
||
|
#injury_severity_pal <- colorFactor(palette = injury_severity$color, levels = injury_severity$InjSevName)
|
||
|
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(InjSevName1 = InjSevName)
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(InjSevName2 = InjSevName)
|
||
|
# add bike or pedestrian roles ----
|
||
|
|
||
|
bike_roles <- c("BIKE", "O BIKE")
|
||
|
ped_roles <- c("PED", "O PED", "PED NO")
|
||
|
vuln_roles <- c(bike_roles, ped_roles)
|
||
|
|
||
|
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
|
||
|
INJSVR1,
|
||
|
ifelse(ROLE2 %in% vuln_roles,
|
||
|
INJSVR2,
|
||
|
NA)))
|
||
|
|
||
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
||
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
||
|
rename(ped_inj_name = InjSevName)
|
||
|
|
||
|
# bike or ped
|
||
|
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
|
||
|
"Bicyclist",
|
||
|
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
|
||
|
"Pedestrian",
|
||
|
NA)))
|
||
|
```
|
||
|
|
||
|
## Save resulting data table as an Rda file for use in other documents
|
||
|
```{r savecleaneddata, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
|
||
|
save(TOPS_data, file = "data/TOPS/TOPS_data.Rda")
|
||
|
```
|