2024-04-02 12:36:56 -05:00
|
|
|
library(tidyverse)
|
|
|
|
library(ggmap)
|
|
|
|
library(sf)
|
|
|
|
library(osrm)
|
|
|
|
library(smoothr)
|
|
|
|
library(ggnewscale)
|
|
|
|
library(RColorBrewer)
|
|
|
|
library(magick)
|
|
|
|
library(rsvg)
|
|
|
|
library(parallel)
|
|
|
|
|
|
|
|
## add data from WiscTransPortal Crash Data Retrieval Facility ----
|
|
|
|
## query: SELECT *
|
|
|
|
## FROM DTCRPRD.SUMMARY_COMBINED C
|
|
|
|
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
|
|
|
|
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
|
|
|
|
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
|
|
|
|
## ORDER BY C.DOCTNMBR
|
|
|
|
|
|
|
|
## Load TOPS data ----
|
|
|
|
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
|
|
|
|
TOPS_data <- as.list(NULL)
|
2024-04-04 12:15:32 -05:00
|
|
|
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
2024-04-02 12:36:56 -05:00
|
|
|
message(paste("importing data from file: ", file))
|
|
|
|
year <- substr(file, 21, 24)
|
|
|
|
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
2024-04-04 12:15:32 -05:00
|
|
|
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
|
2024-04-02 12:36:56 -05:00
|
|
|
TOPS_data[[file]] <- csv_run
|
|
|
|
}
|
2024-04-04 12:15:32 -05:00
|
|
|
rm(csv_run, file, year)
|
2024-04-02 12:36:56 -05:00
|
|
|
TOPS_data <- bind_rows(TOPS_data)
|
|
|
|
|
|
|
|
## clean up data
|
|
|
|
TOPS_data <- TOPS_data %>%
|
|
|
|
mutate(date = mdy(CRSHDATE),
|
|
|
|
age1 = as.double(AGE1),
|
|
|
|
age2 = as.double(AGE2),
|
|
|
|
latitude = as.double(LATDECDG),
|
|
|
|
longitude = as.double(LONDECDG)) %>%
|
|
|
|
mutate(month = month(date, label = TRUE),
|
|
|
|
year = as.factor(year(date)))
|
|
|
|
|
2024-04-04 12:15:32 -05:00
|
|
|
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
|
|
|
|
|
2024-04-02 12:36:56 -05:00
|
|
|
# county index
|
|
|
|
counties <- data.frame(name = c("Dane", "Milwaukee"),
|
|
|
|
CNTYCODE = c(13, 40),
|
|
|
|
COUNTY = c("DANE", "MILWAUKEE"))
|
|
|
|
# Injury Severy Index and Color -------------------------------------------
|
|
|
|
# injury severity index
|
|
|
|
injury_severity <- data.frame(InjSevName = c("No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
|
|
|
code = c("O", "C", "B", "A", "K"),
|
|
|
|
color = c("#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
|
|
|
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR == code)) %>% mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName))
|
|
|
|
|
|
|
|
|
|
|
|
# ---- add additional data
|
|
|
|
## add school enrollment data
|
|
|
|
enrollment <- read_csv(file = "data/Schools/Enrollement_2022-2023/enrollment_by_gradelevel_certified_2022-23.csv",
|
|
|
|
col_types = "ccccccccccccciid")
|
|
|
|
enrollment_wide <-
|
|
|
|
enrollment %>%
|
|
|
|
mutate(district_school = paste0(DISTRICT_CODE, SCHOOL_CODE),
|
|
|
|
variable_name = paste0(GROUP_BY, "__", GROUP_BY_VALUE)) %>%
|
|
|
|
mutate(variable_name = str_replace_all(variable_name, "[ ]", "_")) %>%
|
|
|
|
pivot_wider(id_cols = c(district_school, GRADE_LEVEL, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND), names_from = variable_name, values_from = PERCENT_OF_GROUP) %>%
|
|
|
|
group_by(district_school, SCHOOL_NAME, DISTRICT_NAME, GRADE_GROUP, CHARTER_IND) %>%
|
|
|
|
summarise_at(vars("Disability__Autism":"Migrant_Status__[Data_Suppressed]"), mean, na.rm = TRUE)
|
|
|
|
|
|
|
|
district_info <- data.frame(name = c("Madison Metropolitan", "Milwaukee"),
|
|
|
|
code = c("3269","3619"),
|
|
|
|
walk_boundary_hs = c(1.5, 2),
|
|
|
|
walk_boundary_ms = c(1.5, 2),
|
|
|
|
walk_boundary_es = c(1.5, 1))
|
|
|
|
|
|
|
|
## load school locations
|
|
|
|
WI_schools <- st_read(dsn = "data/Schools/WI_schools.gpkg")
|
|
|
|
|
|
|
|
WI_schools <- left_join(WI_schools %>% mutate(district_school = paste0(SDID, SCH_CODE)),
|
|
|
|
enrollment_wide,
|
|
|
|
join_by(district_school))
|
|
|
|
|
|
|
|
## load bike LTS networks
|
|
|
|
# bike_lts <- as.list(NULL)
|
|
|
|
# for(file in list.files("data/bike_lts")) {
|
|
|
|
# county <- str_sub(file, 10, -9)
|
|
|
|
# lts_run <- st_read(paste0("data/bike_lts/", file))
|
|
|
|
# lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
|
|
|
|
# bike_lts[[county]] <- lts_run
|
|
|
|
# }
|
|
|
|
# bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
|
|
|
|
# color = c("#1a9641",
|
|
|
|
# "#a6d96a",
|
|
|
|
# "#fdae61",
|
|
|
|
# "#d7191c",
|
|
|
|
# "#d7191c"))
|
|
|
|
|
|
|
|
# register stadia API key ----
|
|
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
|
|
#options(ggmap.file_drawer = "data/basemaps")
|
|
|
|
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
|
|
|
|
# saveRDS(list(), file_drawer("index.rds"))
|
|
|
|
#readRDS(file_drawer("index.rds"))
|
|
|
|
#file_drawer("index.rds")
|
|
|
|
|
|
|
|
# load census api key ----
|
|
|
|
#census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
|
|
|
|
|
|
|
# load logo
|
|
|
|
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
|
|
|
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
|
|
|
|
|
|
|
|
## ---- generate charts/maps ----
|
|
|
|
## set parameters of run
|
|
|
|
|
|
|
|
county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
|
|
|
|
#county_focus <- c("DANE")
|
|
|
|
#county_focus <- c("MILWAUKEE")
|
|
|
|
#county_focus <- c("WINNEBAGO")
|
|
|
|
#county_focus <- c("DANE", "MILWAUKEE", "BROWN")
|
|
|
|
#county_focus <- c("VILAS", "BROWN")
|
|
|
|
#county_focus <- c("BROWN")
|
|
|
|
|
2024-04-03 11:48:00 -05:00
|
|
|
school_type_focus <- unique(WI_schools %>% pull(SCHOOLTYPE))
|
|
|
|
#school_type_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus)) %>% pull(SCHOOLTYPE))
|
2024-04-02 12:36:56 -05:00
|
|
|
#school_type_focus <- c("High School")
|
|
|
|
|
2024-04-03 11:48:00 -05:00
|
|
|
district_focus <- unique(WI_schools %>% pull(DISTRICT_NAME))
|
|
|
|
#district_focus <- unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus), SCHOOLTYPE %in% school_type_focus, !is.na(DISTRICT_NAME)) %>% pull(DISTRICT_NAME))
|
2024-04-02 12:36:56 -05:00
|
|
|
#district_focus <- c("Madison Metropolitan")
|
|
|
|
#district_focus <- c("Milwaukee")
|
2024-04-03 13:32:55 -05:00
|
|
|
|
2024-04-02 12:36:56 -05:00
|
|
|
school_number <- length(unique(WI_schools %>% filter(CTY_DIST %in% str_to_title(county_focus),
|
|
|
|
SCHOOLTYPE %in% school_type_focus,
|
|
|
|
DISTRICT_NAME %in% district_focus) %>%
|
|
|
|
pull(district_school)))
|
|
|
|
## * generate county charts ----
|
|
|
|
for(county in county_focus) {
|
|
|
|
message(county)
|
|
|
|
TOPS_data %>%
|
|
|
|
filter(CNTYNAME %in% county) %>%
|
|
|
|
filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18) %>%
|
|
|
|
group_by(year) %>% summarise(count = n_distinct(DOCTNMBR)) %>%
|
|
|
|
ggplot() +
|
|
|
|
geom_col(aes(x = year,
|
|
|
|
y = count),
|
|
|
|
fill = "darkred") +
|
|
|
|
scale_y_continuous(expand = expansion(mult = c(0,0.07))) +
|
|
|
|
labs(title = paste0("Pedestrians/bicyclists under 18 years old hit by cars in ",
|
|
|
|
str_to_title(county),
|
|
|
|
" County"),
|
2024-04-04 12:15:32 -05:00
|
|
|
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
|
|
|
strftime(retrieve_date, format = "%m/%Y"),
|
|
|
|
" per direction of the WisDOT Bureau of Transportation Safety",
|
|
|
|
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
|
2024-04-02 12:36:56 -05:00
|
|
|
x = "Year",
|
2024-04-03 11:48:00 -05:00
|
|
|
y = "Number of crashes")
|
2024-04-03 13:32:55 -05:00
|
|
|
ggsave(file = paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
|
2024-04-02 12:36:56 -05:00
|
|
|
str_to_title(county),
|
|
|
|
" County/_",
|
|
|
|
str_to_title(county),
|
|
|
|
" County_year.pdf"),
|
|
|
|
title = paste0(county, " County Youth Pedestrian/Bike crashes"),
|
|
|
|
device = pdf,
|
|
|
|
height = 8.5,
|
|
|
|
width = 11,
|
|
|
|
units = "in",
|
|
|
|
create.dir = TRUE)
|
|
|
|
|
|
|
|
# # generate map for county
|
|
|
|
# county_data <- WI_schools %>% filter(CTY_DIST %in% str_to_title(county))
|
|
|
|
# bbox <- st_bbox(st_transform(st_buffer(county_data %>% pull(geom), dist = 4000), crs = 4326))
|
|
|
|
# bbox <- c(left = as.double(bbox[1]), bottom = as.double(bbox[2]), right = as.double(bbox[3]), top = as.double(bbox[4]))
|
|
|
|
#
|
|
|
|
# #get basemap
|
|
|
|
# basemap <- get_stadiamap(bbox = bbox, zoom = 12, maptype = "stamen_toner_lite")
|
|
|
|
#
|
|
|
|
# # generate map
|
|
|
|
# ggmap(basemap) +
|
|
|
|
# labs(title = paste0("Crashes between cars and youth (under 18) pedestrians/bicyclists in ",
|
|
|
|
# str_to_title(county),
|
|
|
|
# " County"),
|
|
|
|
# subtitle = paste0(min(year(TOPS_data$date), na.rm = TRUE), " - ", max(year(TOPS_data$date), na.rm = TRUE)),
|
|
|
|
# caption = "data from Wisconsin DOT, UW TOPS Laboratory, Wisconsin DPI, and OpenStreetMap",
|
|
|
|
# x = NULL,
|
|
|
|
# y = NULL) +
|
|
|
|
# theme(axis.text=element_blank(),
|
|
|
|
# axis.ticks=element_blank()) +
|
|
|
|
#
|
|
|
|
# # add crash heatmap
|
|
|
|
# # stat_density_2d(data = TOPS_data %>%
|
|
|
|
# # filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18),
|
|
|
|
# # inherit.aes = FALSE,
|
|
|
|
# # geom = "polygon",
|
|
|
|
# # aes(fill = after_stat(level),
|
|
|
|
# # x = longitude,
|
|
|
|
# # y = latitude),
|
|
|
|
# # alpha = 0.2,
|
|
|
|
# # color = NA,
|
|
|
|
# # na.rm = TRUE,
|
|
|
|
# # bins = 12,
|
|
|
|
# # n = 300) +
|
|
|
|
# # scale_fill_distiller(type = "div", palette = "YlOrRd", guide = "none", direction = 1) +
|
|
|
|
#
|
|
|
|
# # add crashes
|
|
|
|
# new_scale_color() +
|
|
|
|
# geom_point(data = TOPS_data %>%
|
|
|
|
# filter(ROLE1 %in% c("BIKE", "PED") & age1 < 18 | ROLE2 %in% c("BIKE", "PED") & age2 < 18) %>%
|
|
|
|
# filter(longitude >= as.double(bbox[1]),
|
|
|
|
# latitude >= as.double(bbox[2]),
|
|
|
|
# longitude <= as.double(bbox[3]),
|
|
|
|
# latitude <= as.double(bbox[4])),
|
|
|
|
# aes(x = longitude,
|
|
|
|
# y = latitude,
|
|
|
|
# color = InjSevName),
|
|
|
|
# shape = 18,
|
|
|
|
# size = 1) +
|
|
|
|
# scale_color_manual(values = injury_severity$color, name = "Crash Severity")
|
|
|
|
#
|
|
|
|
# # add school location
|
|
|
|
# # new_scale_color() +
|
|
|
|
# # geom_sf(data = st_transform(WI_schools, crs = 4326),
|
|
|
|
# # inherit.aes = FALSE,
|
|
|
|
# # aes(color = "school"),
|
|
|
|
# # size = 2,
|
|
|
|
# # shape = 0) +
|
|
|
|
# # scale_color_manual(values = "black", name = NULL)
|
|
|
|
#
|
|
|
|
# ggsave(file = paste0("figures/crash_maps/Crash Maps/",
|
|
|
|
# str_to_title(county), " County/_",
|
|
|
|
# str_to_title(county), " County.pdf"),
|
|
|
|
# title = paste0(str_to_title(county), " County Youth Pedestrian/Bike crashes"),
|
|
|
|
# device = pdf,
|
|
|
|
# height = 8.5,
|
|
|
|
# width = 11,
|
|
|
|
# units = "in",
|
|
|
|
# create.dir = TRUE)
|
|
|
|
}
|
|
|
|
|
|
|
|
# * generate individual school maps ----
|
|
|
|
options(osrm.server = "http://127.0.0.1:5000/")
|
|
|
|
options(osrm.profile = "walk")
|
|
|
|
|
|
|
|
districts_done <- read_csv(file = "other/districts_done.csv")
|
|
|
|
|
|
|
|
district_focus <- district_focus[! district_focus %in% districts_done$district]
|
|
|
|
generate_school_maps <- function(district) {
|
|
|
|
|
2024-04-03 11:48:00 -05:00
|
|
|
message(paste("***", district, "School District |", match(district, district_focus), "/", length(district_focus)))
|
2024-04-03 13:32:55 -05:00
|
|
|
options(ggmap.file_drawer = paste0("~/temp/wi_crashes/basemaps/districts/", district))
|
2024-04-02 12:36:56 -05:00
|
|
|
dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
|
|
|
|
saveRDS(list(), file_drawer("index.rds"))
|
|
|
|
readRDS(file_drawer("index.rds"))
|
|
|
|
file_drawer("index.rds")
|
|
|
|
for(school in WI_schools %>%
|
|
|
|
filter(DISTRICT_NAME %in% district,
|
|
|
|
SCHOOLTYPE %in% school_type_focus,
|
|
|
|
!st_is_empty(geom)) %>%
|
|
|
|
pull(district_school)) {
|
|
|
|
school_data <- WI_schools %>% filter(district_school == school)
|
|
|
|
message(paste(school_data %>% pull(SCHOOL_NAME), "-", district, "School District", "-", school_data %>% pull(CTY_DIST), "County"))
|
|
|
|
|
|
|
|
#find walk boundary distance for school
|
|
|
|
if(length(which(district_info$name == district)) > 0) {
|
|
|
|
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% "High School",
|
|
|
|
walk_boundary_mi <- district_info$walk_boundary_hs[district_info$name == district],
|
|
|
|
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Junior High School", "Middle School"),
|
|
|
|
walk_boundary_mi <- district_info$walk_boundary_ms[district_info$name == district],
|
|
|
|
ifelse((school_data %>% pull(SCHOOLTYPE)) %in% c("Combined Elementary/Secondary School", "Elementary School"),
|
|
|
|
walk_boundary_mi <- district_info$walk_boundary_es[district_info$name == district],
|
|
|
|
walk_boundary <- 2)))
|
|
|
|
} else {
|
|
|
|
walk_boundary_mi <- 2
|
|
|
|
}
|
|
|
|
walk_boundary_m <- walk_boundary_mi * 1609
|
|
|
|
|
|
|
|
walk_boundary_poly <- fill_holes(st_make_valid(osrmIsodistance(
|
|
|
|
loc = st_transform(school_data %>% pull(geom), crs = 4326),
|
|
|
|
breaks = c(walk_boundary_m),
|
|
|
|
res = 80)
|
|
|
|
), units::set_units(1, km^2))
|
|
|
|
|
|
|
|
# create bounding box from school, 5km away.
|
|
|
|
bbox <- st_bbox(st_transform(st_buffer(school_data %>% pull(geom), dist = walk_boundary_m + 500), crs = 4326))
|
|
|
|
bbox <- c(left = as.double(bbox[1]),
|
|
|
|
bottom = as.double(bbox[2]),
|
|
|
|
right = as.double(bbox[3]),
|
|
|
|
top = as.double(bbox[4]))
|
|
|
|
|
|
|
|
#get basemap
|
2024-04-03 11:11:37 -05:00
|
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
|
2024-04-02 12:36:56 -05:00
|
|
|
|
|
|
|
# generate map
|
|
|
|
ggmap(basemap) +
|
|
|
|
labs(title = paste0("Crashes between cars and youth (<18) pedestrians/bicyclists near ",
|
|
|
|
school_data %>% pull(SCHOOL_NAME),
|
|
|
|
" School"),
|
|
|
|
subtitle = paste0(school_data %>% pull(DISTRICT_NAME),
|
|
|
|
" School District | ",
|
|
|
|
min(year(TOPS_data$date), na.rm = TRUE),
|
|
|
|
" - ",
|
|
|
|
max(year(TOPS_data$date), na.rm = TRUE)),
|
2024-04-04 12:15:32 -05:00
|
|
|
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
|
|
|
strftime(retrieve_date, format = "%m/%Y"),
|
|
|
|
" per direction of the WisDOT Bureau of Transportation Safety",
|
|
|
|
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
|
2024-04-02 12:36:56 -05:00
|
|
|
x = NULL,
|
|
|
|
y = NULL) +
|
|
|
|
theme(axis.text=element_blank(),
|
2024-04-03 11:11:37 -05:00
|
|
|
axis.ticks=element_blank(),
|
|
|
|
plot.caption = element_text(color = "grey")) +
|
2024-04-02 12:36:56 -05:00
|
|
|
|
|
|
|
## add bike lts
|
|
|
|
#geom_sf(data = bike_lts[[county]],
|
|
|
|
# inherit.aes = FALSE,
|
|
|
|
# aes(color = lts)) +
|
|
|
|
#scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
|
|
|
|
|
|
|
|
# add crash locations
|
|
|
|
new_scale_fill() +
|
|
|
|
geom_point(data = TOPS_data %>%
|
|
|
|
filter(ROLE1 %in% c("BIKE", "PED")
|
|
|
|
& age1 < 18
|
|
|
|
| ROLE2 %in% c("BIKE", "PED")
|
|
|
|
& age2 < 18
|
|
|
|
) %>%
|
|
|
|
filter(longitude >= as.double(bbox[1]),
|
|
|
|
latitude >= as.double(bbox[2]),
|
|
|
|
longitude <= as.double(bbox[3]),
|
|
|
|
latitude <= as.double(bbox[4])),
|
|
|
|
aes(x = longitude,
|
|
|
|
y = latitude,
|
|
|
|
fill = InjSevName),
|
|
|
|
shape = 23,
|
|
|
|
size = 3) +
|
|
|
|
scale_fill_manual(values = injury_severity$color, name = "Crash Severity") +
|
|
|
|
# add walk boundary
|
|
|
|
new_scale_color() +
|
|
|
|
new_scale_fill() +
|
|
|
|
geom_sf(data = walk_boundary_poly,
|
|
|
|
inherit.aes = FALSE,
|
|
|
|
aes(color = paste0(walk_boundary_mi, " mile walking boundary")),
|
|
|
|
fill = NA,
|
|
|
|
linewidth = 1) +
|
|
|
|
scale_color_manual(values = "black", name = NULL) +
|
|
|
|
# add school location
|
|
|
|
# geom_sf(data = st_transform(school_data, crs = 4326), inherit.aes = FALSE) +
|
|
|
|
annotation_raster(school_symbol,
|
|
|
|
# Position adjustments here using plot_box$max/min/range
|
|
|
|
ymin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] - 0.001,
|
|
|
|
ymax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[2] + 0.001,
|
|
|
|
xmin = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] - 0.0015,
|
|
|
|
xmax = as.double((st_transform(school_data, crs = 4326) %>% pull(geom))[[1]])[1] + 0.0015) +
|
|
|
|
geom_sf_label(data = st_transform(school_data, crs = 4326),
|
|
|
|
inherit.aes = FALSE,
|
|
|
|
mapping = aes(label = paste(SCHOOL_NAME, "School")),
|
|
|
|
nudge_y = 0.0015,
|
|
|
|
label.size = 0.04,
|
|
|
|
size = 2) +
|
|
|
|
annotation_raster(logo,
|
|
|
|
# Position adjustments here using plot_box$max/min/range
|
|
|
|
ymin = bbox['top'] - (bbox['top']-bbox['bottom']) * 0.16,
|
|
|
|
ymax = bbox['top'],
|
|
|
|
xmin = bbox['right'] + (bbox['right']-bbox['left']) * 0.05,
|
|
|
|
xmax = bbox['right'] + (bbox['right']-bbox['left']) * 0.20) +
|
|
|
|
coord_sf(clip = "off")
|
|
|
|
|
2024-04-03 13:32:55 -05:00
|
|
|
ggsave(file = paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
|
2024-04-02 12:36:56 -05:00
|
|
|
str_to_title(school_data %>% pull(CTY_DIST)),
|
|
|
|
" County/",
|
|
|
|
school_data %>% pull(DISTRICT_NAME),
|
|
|
|
" School District/",
|
|
|
|
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
|
|
|
|
"s/",
|
|
|
|
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
|
|
|
|
" School.pdf"),
|
|
|
|
|
|
|
|
title = paste0(school_data %>% pull(SCHOOL), " Youth Pedestrian/Bike crashes"),
|
|
|
|
device = pdf,
|
|
|
|
height = 8.5,
|
|
|
|
width = 11,
|
|
|
|
units = "in",
|
|
|
|
create.dir = TRUE)
|
|
|
|
}
|
|
|
|
districts_done <<- c(districts_done, district)
|
|
|
|
}
|
|
|
|
|
|
|
|
## generate maps in parallel ----
|
|
|
|
mclapply(district_focus,
|
|
|
|
generate_school_maps,
|
2024-04-03 11:48:00 -05:00
|
|
|
mc.cores = 12,
|
2024-04-02 12:36:56 -05:00
|
|
|
mc.cleanup = TRUE,
|
|
|
|
mc.preschedule = TRUE,
|
|
|
|
mc.silent = FALSE)
|
|
|
|
|
|
|
|
# double check that all schools have a map ----
|
|
|
|
double_check <- list(NULL)
|
|
|
|
for(school in WI_schools$district_school) {
|
|
|
|
school_data <- WI_schools %>% filter(district_school %in% school)
|
|
|
|
school_check <- data.frame(district_school = c(school),
|
2024-04-03 13:32:55 -05:00
|
|
|
exists = c(file.exists(paste0("~/temp/wi_crashes/figures/crash_maps/Crash Maps/",
|
2024-04-02 12:36:56 -05:00
|
|
|
str_to_title(school_data %>% pull(CTY_DIST)),
|
|
|
|
" County/",
|
|
|
|
school_data %>% pull(DISTRICT_NAME),
|
|
|
|
" School District/",
|
|
|
|
str_replace_all(school_data %>% pull(SCHOOLTYPE), "/","-"),
|
|
|
|
"s/",
|
|
|
|
str_replace_all(school_data %>% pull(SCHOOL_NAME), "/", "-"),
|
|
|
|
" School.pdf"))))
|
|
|
|
double_check[[school]] <- school_check
|
|
|
|
}
|
|
|
|
double_check <- bind_rows(double_check)
|
|
|
|
unique(WI_schools %>%
|
|
|
|
filter(district_school %in% (double_check %>%
|
|
|
|
filter(exists == FALSE) %>%
|
|
|
|
pull(district_school)),
|
|
|
|
!st_is_empty(geom)) %>%
|
|
|
|
pull(DISTRICT_NAME))
|