2024-06-24 14:40:52 -05:00
|
|
|
library(tidyverse)
|
|
|
|
library(ggmap)
|
|
|
|
library(sf)
|
|
|
|
library(osrm)
|
|
|
|
library(smoothr)
|
|
|
|
library(ggnewscale)
|
|
|
|
library(RColorBrewer)
|
|
|
|
library(magick)
|
|
|
|
library(rsvg)
|
|
|
|
library(parallel)
|
|
|
|
library(tidycensus)
|
|
|
|
|
|
|
|
## add data from WiscTransPortal Crash Data Retrieval Facility ----
|
|
|
|
## query: SELECT *
|
|
|
|
## FROM DTCRPRD.SUMMARY_COMBINED C
|
|
|
|
## WHERE C.CRSHDATE BETWEEN TO_DATE('2022-JAN','YYYY-MM') AND
|
|
|
|
## LAST_DAY(TO_DATE('2022-DEC','YYYY-MM')) AND
|
|
|
|
## (C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y')
|
|
|
|
## ORDER BY C.DOCTNMBR
|
|
|
|
|
|
|
|
## Load TOPS data ----
|
|
|
|
## load TOPS data for the whole state (crashes involving bikes and pedestrians),
|
|
|
|
TOPS_data <- as.list(NULL)
|
|
|
|
for (file in list.files(path = "data/TOPS/", pattern = "crash-data-download")) {
|
|
|
|
message(paste("importing data from file: ", file))
|
|
|
|
year <- substr(file, 21, 24)
|
|
|
|
csv_run <- read_csv(file = paste0("data/TOPS/",file), col_types = cols(.default = "c"))
|
|
|
|
csv_run["retreive_date"] <- file.info(file = paste0("data/TOPS/",file))$mtime
|
|
|
|
TOPS_data[[file]] <- csv_run
|
|
|
|
}
|
|
|
|
rm(csv_run, file, year)
|
|
|
|
TOPS_data <- bind_rows(TOPS_data)
|
|
|
|
|
|
|
|
## clean up data
|
|
|
|
TOPS_data <- TOPS_data %>%
|
|
|
|
mutate(date = mdy(CRSHDATE),
|
|
|
|
age1 = as.double(AGE1),
|
|
|
|
age2 = as.double(AGE2),
|
|
|
|
latitude = as.double(LATDECDG),
|
|
|
|
longitude = as.double(LONDECDG)) %>%
|
|
|
|
mutate(month = month(date, label = TRUE),
|
|
|
|
year = as.factor(year(date)))
|
|
|
|
|
|
|
|
retrieve_date <- max(TOPS_data %>% filter(year %in% max(year(TOPS_data$date), na.rm = TRUE)) %>% pull(retreive_date))
|
|
|
|
|
|
|
|
# county index
|
|
|
|
counties <- data.frame(name = c("Dane", "Milwaukee"),
|
|
|
|
CNTYCODE = c(13, 40),
|
|
|
|
COUNTY = c("DANE", "MILWAUKEE"))
|
|
|
|
|
|
|
|
# Injury Severy Index and Color -------------------------------------------
|
|
|
|
# injury severity index
|
|
|
|
injury_severity <- data.frame(InjSevName = c("Injury severity unknown", "No apparent injury", "Possible Injury", "Suspected Minor Injury","Suspected Serious Injury","Fatality"),
|
|
|
|
code = c(NA, "O", "C", "B", "A", "K"),
|
|
|
|
color = c("grey", "#fafa6e", "#edc346", "#d88d2d", "#bd5721", "#9b1c1c"))
|
|
|
|
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR1 == code)) %>%
|
|
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
|
|
rename(InjSevName1 = InjSevName)
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(INJSVR2 == code)) %>%
|
|
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
|
|
rename(InjSevName2 = InjSevName)
|
|
|
|
# add bike or pedestrian roles ----
|
|
|
|
|
|
|
|
bike_roles <- c("BIKE", "O BIKE")
|
|
|
|
ped_roles <- c("PED", "O PED", "PED NO")
|
|
|
|
vuln_roles <- c(bike_roles, ped_roles)
|
|
|
|
|
|
|
|
TOPS_data <- TOPS_data %>% mutate(ped_inj = ifelse(ROLE1 %in% vuln_roles,
|
|
|
|
INJSVR1,
|
|
|
|
ifelse(ROLE2 %in% vuln_roles,
|
|
|
|
INJSVR2,
|
|
|
|
NA)))
|
|
|
|
|
|
|
|
TOPS_data <- left_join(TOPS_data, injury_severity %>% select(InjSevName, code), join_by(ped_inj == code)) %>%
|
|
|
|
mutate(InjSevName = factor(InjSevName, levels = injury_severity$InjSevName)) %>%
|
|
|
|
rename(ped_inj_name = InjSevName)
|
|
|
|
|
|
|
|
# bike or ped
|
|
|
|
TOPS_data <- TOPS_data %>% mutate(vulnerable_role = ifelse(ROLE1 %in% bike_roles | ROLE2 %in% bike_roles,
|
|
|
|
"Bicyclist",
|
|
|
|
ifelse(ROLE1 %in% ped_roles | ROLE2 %in% ped_roles,
|
|
|
|
"Pedestrian",
|
|
|
|
NA)))
|
|
|
|
## load bike LTS networks
|
|
|
|
bike_lts <- as.list(NULL)
|
|
|
|
for(file in list.files("data/bike_lts")) {
|
|
|
|
county <- str_sub(file, 10, -9)
|
|
|
|
lts_run <- st_read(paste0("data/bike_lts/", file))
|
|
|
|
lts_run[["lts"]] <- as.factor(lts_run$LTS_F)
|
|
|
|
bike_lts[[county]] <- lts_run
|
|
|
|
}
|
|
|
|
bike_lts_scale <- data.frame(code = c(1, 2, 3, 4, 9),
|
|
|
|
color = c("#1a9641",
|
|
|
|
"#a6d96a",
|
|
|
|
"#fdae61",
|
|
|
|
"#d7191c",
|
|
|
|
"#d7191c"))
|
|
|
|
|
|
|
|
# register stadia API key ----
|
|
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
|
|
#options(ggmap.file_drawer = "basemaps")
|
|
|
|
# dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
|
|
|
|
# saveRDS(list(), file_drawer("index.rds"))
|
|
|
|
#readRDS(file_drawer("index.rds"))
|
|
|
|
#file_drawer("index.rds")
|
|
|
|
|
|
|
|
# load census api key ----
|
|
|
|
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
|
|
|
|
|
|
|
|
# load logo
|
|
|
|
logo <- image_read(path = "other/BFW_Logo_180_x_200_transparent_background.png")
|
|
|
|
school_symbol <- image_read_svg(path = "other/school_FILL0_wght400_GRAD0_opsz24.svg")
|
|
|
|
|
|
|
|
## ---- generate charts/maps ----
|
|
|
|
## set parameters of run
|
|
|
|
|
|
|
|
#county_focus <- str_to_upper(unique(WI_schools %>% pull(CTY_DIST)))
|
|
|
|
#county_focus <- c("DANE")
|
2024-08-02 18:05:23 -05:00
|
|
|
county_focus <- "Dane"
|
2024-06-24 14:40:52 -05:00
|
|
|
|
|
|
|
municipality_geom <- st_read("data/WI_Cities,_Towns_and_Villages_January_2024.geojson")
|
2024-08-02 18:05:23 -05:00
|
|
|
#municipality_focus <- c("Mcfarland")
|
|
|
|
#municipality_focus <- c("Monona", "Fitchburg")
|
|
|
|
municipality_focus <- municipality_geom %>% filter(CNTY_NAME == county_focus) %>% pull(MCD_NAME)
|
2024-06-24 14:40:52 -05:00
|
|
|
|
|
|
|
for(municipality in municipality_focus) {
|
|
|
|
|
|
|
|
message(paste("***", municipality))
|
|
|
|
options(ggmap.file_drawer = paste0("basemaps/municipalities/", municipality))
|
|
|
|
dir.create(file_drawer(), recursive = TRUE, showWarnings = FALSE)
|
|
|
|
saveRDS(list(), file_drawer("index.rds"))
|
|
|
|
readRDS(file_drawer("index.rds"))
|
|
|
|
file_drawer("index.rds")
|
|
|
|
|
2024-08-02 18:05:23 -05:00
|
|
|
municipality_filtered <- municipality_geom %>% filter(CNTY_NAME == county_focus, MCD_NAME == municipality) %>% pull(geometry)
|
|
|
|
|
2024-06-24 14:40:52 -05:00
|
|
|
# create bounding box from school, 5km away.
|
2024-08-02 18:05:23 -05:00
|
|
|
bbox_poly <- st_transform(st_buffer(municipality_filtered, 1000), crs = 4326)
|
2024-06-24 14:40:52 -05:00
|
|
|
bbox <- st_bbox(bbox_poly)
|
|
|
|
bbox <- c(left = as.double(bbox[1]),
|
|
|
|
bottom = as.double(bbox[2]),
|
|
|
|
right = as.double(bbox[3]),
|
|
|
|
top = as.double(bbox[4]))
|
|
|
|
|
|
|
|
#get basemap
|
|
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 15, maptype = "stamen_toner_lite")
|
|
|
|
|
|
|
|
# generate map
|
|
|
|
ggmap(basemap) +
|
|
|
|
labs(title = paste0(
|
|
|
|
# "Crashes between cars and youth (<18) pedestrians/bicyclists near ",
|
|
|
|
"Crashes between cars and all pedestrians/bicyclists in/near ",
|
|
|
|
municipality),
|
|
|
|
subtitle = paste0(min(year(TOPS_data$date), na.rm = TRUE),
|
|
|
|
" - ",
|
|
|
|
max(year(TOPS_data$date), na.rm = TRUE)),
|
|
|
|
caption = paste0("crash data from UW TOPS lab - retrieved ",
|
|
|
|
strftime(retrieve_date, format = "%m/%Y"),
|
|
|
|
" per direction of the WisDOT Bureau of Transportation Safety",
|
|
|
|
"\nbasemap from StadiaMaps and OpenStreetMap Contributers"),
|
|
|
|
x = NULL,
|
|
|
|
y = NULL) +
|
|
|
|
theme(axis.text=element_blank(),
|
|
|
|
axis.ticks=element_blank(),
|
|
|
|
plot.caption = element_text(color = "grey")) +
|
|
|
|
|
|
|
|
## add bike lts
|
|
|
|
geom_sf(data = bike_lts[[county]] %>% st_intersection(bbox_poly),
|
|
|
|
inherit.aes = FALSE,
|
|
|
|
aes(color = lts)) +
|
|
|
|
scale_color_manual(values = bike_lts_scale$color, name = "Bike Level of Traffic Stress") +
|
|
|
|
|
|
|
|
# add crash locations
|
|
|
|
new_scale_fill() +
|
|
|
|
geom_point(data = TOPS_data %>%
|
|
|
|
filter(ROLE1 %in% c("BIKE", "PED")
|
|
|
|
# & age1 < 18
|
|
|
|
| ROLE2 %in% c("BIKE", "PED")
|
|
|
|
# & age2 < 18
|
|
|
|
) %>%
|
|
|
|
filter(longitude >= as.double(bbox[1]),
|
|
|
|
latitude >= as.double(bbox[2]),
|
|
|
|
longitude <= as.double(bbox[3]),
|
|
|
|
latitude <= as.double(bbox[4])),
|
|
|
|
aes(x = longitude,
|
|
|
|
y = latitude,
|
|
|
|
fill = ped_inj_name),
|
|
|
|
shape = 23,
|
|
|
|
size = 3) +
|
|
|
|
scale_fill_manual(values = injury_severity$color, name = "Crash Severity") +
|
2024-08-02 18:05:23 -05:00
|
|
|
geom_sf(data = municipality_filtered,
|
2024-06-24 14:40:52 -05:00
|
|
|
inherit.aes = FALSE,
|
|
|
|
color = 'black',
|
|
|
|
fill = NA,
|
|
|
|
linewidth = 1) +
|
|
|
|
annotation_raster(logo,
|
|
|
|
# Position adjustments here using plot_box$max/min/range
|
|
|
|
ymin = bbox['top'] - (bbox['top']-bbox['bottom']) * 0.16,
|
|
|
|
ymax = bbox['top'],
|
|
|
|
xmin = bbox['right'] + (bbox['right']-bbox['left']) * 0.05,
|
|
|
|
xmax = bbox['right'] + (bbox['right']-bbox['left']) * 0.20) +
|
|
|
|
coord_sf(clip = "off")
|
|
|
|
|
|
|
|
ggsave(file = paste0("figures/municipalities/",
|
|
|
|
municipality,
|
|
|
|
".pdf"),
|
|
|
|
#title = paste0(municipality, " Youth Pedestrian/Bike crashes"),
|
|
|
|
title = paste0(municipality, " All Pedestrian/Bike crashes"),
|
|
|
|
device = pdf,
|
|
|
|
height = 8.5,
|
|
|
|
width = 11,
|
|
|
|
units = "in",
|
|
|
|
create.dir = TRUE)
|
|
|
|
}
|