513 lines
18 KiB
R
513 lines
18 KiB
R
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
length(unique(metro_data %>% filter(pid %in% c("422")) %>% pull(origtatripno))),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("422")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
View(metro_summary)
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = n())
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid, origtatripno) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = n())
|
|
trip_count = length(unique(origtatripno))
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = length(unique(origtatripno)))
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count))),
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("422")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count)
|
|
metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE)
|
|
segments_sf <- metro_summary_sf %>%
|
|
group_by(rt, pid, des) %>%
|
|
arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed
|
|
mutate(
|
|
lead_geom = lead(geometry),
|
|
lead_spd = lead(spd)
|
|
) %>%
|
|
filter(!is.na(lead_geom)) %>%
|
|
# Create a segment for each pair of points
|
|
rowwise() %>%
|
|
mutate(
|
|
segment = st_cast(st_union(geometry, lead_geom), "LINESTRING")
|
|
) %>%
|
|
ungroup() %>%
|
|
as.data.frame() %>%
|
|
select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>%
|
|
st_as_sf()
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("422")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("422")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("422")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
metro_summary %>% filter(pid %in% c("422"))
|
|
max(metro_summary %>% filter(pid %in% c("422")) %>% pull(trip_count))
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("469")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
library(tidyverse)
|
|
library(influxdbclient)
|
|
library(glue)
|
|
library(ggmap)
|
|
library(sf)
|
|
# parameters needed to make connection to Database
|
|
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
|
org <- "e2581d54779b077f"
|
|
bucket <- "madison-metro"
|
|
days <- 1
|
|
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
|
token = token,
|
|
org = org)
|
|
#---
|
|
# Fields you want to query
|
|
fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno")
|
|
# Creating an empty list to store results for each field
|
|
results <- vector("list", length(fields))
|
|
# Loop through each field, get data, and coerce types if needed
|
|
for (i in seq_along(fields)) {
|
|
field <- fields[i]
|
|
query_string <- glue('from(bucket: "{bucket}") ',
|
|
'|> range(start: -{days}d) ',
|
|
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
|
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
|
data <- influx_connection$query(query_string)
|
|
# Ensure the columns are coerced to consistent types
|
|
# (Optionally add coercion based on your expected types)
|
|
data <- bind_rows(data) %>%
|
|
mutate(value = as.character(`_value`),
|
|
field = `_field`) %>%
|
|
select(time, rt, des, value, field)
|
|
results[[i]] <- data
|
|
}
|
|
# Bind all results together
|
|
metro_raw <- bind_rows(results)
|
|
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
|
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
|
metro_data <- metro_raw %>%
|
|
mutate(time = with_tz(time, "America/Chicago"),
|
|
spd = as.double(spd),
|
|
pdist = as.double(pdist),
|
|
lon = as.double(lon),
|
|
lat = as.double(lat)) %>%
|
|
group_by(origtatripno) %>%
|
|
arrange(time) %>%
|
|
mutate(lag_pdist = lag(pdist),
|
|
lag_time = lag(time)) %>%
|
|
mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280)
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = length(unique(origtatripno)))
|
|
metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE)
|
|
segments_sf <- metro_summary_sf %>%
|
|
group_by(rt, pid, des) %>%
|
|
arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed
|
|
mutate(
|
|
lead_geom = lead(geometry),
|
|
lead_spd = lead(spd)
|
|
) %>%
|
|
filter(!is.na(lead_geom)) %>%
|
|
# Create a segment for each pair of points
|
|
rowwise() %>%
|
|
mutate(
|
|
segment = st_cast(st_union(geometry, lead_geom), "LINESTRING")
|
|
) %>%
|
|
ungroup() %>%
|
|
as.data.frame() %>%
|
|
select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>%
|
|
st_as_sf()
|
|
ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")),
|
|
aes(x = pdist_bucket,
|
|
y = lag_spd)) +
|
|
geom_point() +
|
|
geom_smooth() +
|
|
facet_grid(paste0(rt, "-", des) ~ .)
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
bbox <- c(left = min(metro_data$lon),
|
|
bottom = min(metro_data$lat),
|
|
right = max(metro_data$lon),
|
|
top = max(metro_data$lat))
|
|
#get basemap
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("469")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
library(tidyverse)
|
|
library(influxdbclient)
|
|
library(glue)
|
|
library(ggmap)
|
|
library(sf)
|
|
# parameters needed to make connection to Database
|
|
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
|
org <- "e2581d54779b077f"
|
|
bucket <- "madison-metro"
|
|
days <- 1
|
|
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
|
token = token,
|
|
org = org)
|
|
#---
|
|
# Fields you want to query
|
|
fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno")
|
|
# Creating an empty list to store results for each field
|
|
results <- vector("list", length(fields))
|
|
# Loop through each field, get data, and coerce types if needed
|
|
for (i in seq_along(fields)) {
|
|
field <- fields[i]
|
|
query_string <- glue('from(bucket: "{bucket}") ',
|
|
'|> range(start: -{days}d) ',
|
|
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
|
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
|
data <- influx_connection$query(query_string)
|
|
# Ensure the columns are coerced to consistent types
|
|
# (Optionally add coercion based on your expected types)
|
|
data <- bind_rows(data) %>%
|
|
mutate(value = as.character(`_value`),
|
|
field = `_field`) %>%
|
|
select(time, rt, des, value, field)
|
|
results[[i]] <- data
|
|
}
|
|
# Bind all results together
|
|
metro_raw <- bind_rows(results)
|
|
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
|
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
|
metro_data <- metro_raw %>%
|
|
mutate(time = with_tz(time, "America/Chicago"),
|
|
spd = as.double(spd),
|
|
pdist = as.double(pdist),
|
|
lon = as.double(lon),
|
|
lat = as.double(lat)) %>%
|
|
group_by(origtatripno) %>%
|
|
arrange(time) %>%
|
|
mutate(lag_pdist = lag(pdist),
|
|
lag_time = lag(time)) %>%
|
|
mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280)
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = length(unique(origtatripno)))
|
|
metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE)
|
|
metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE)
|
|
library(tidyverse)
|
|
library(influxdbclient)
|
|
library(glue)
|
|
library(ggmap)
|
|
library(sf)
|
|
# parameters needed to make connection to Database
|
|
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
|
org <- "e2581d54779b077f"
|
|
bucket <- "madison-metro"
|
|
days <- 1
|
|
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
|
token = token,
|
|
org = org)
|
|
#---
|
|
# Fields you want to query
|
|
fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno")
|
|
# Creating an empty list to store results for each field
|
|
results <- vector("list", length(fields))
|
|
# Loop through each field, get data, and coerce types if needed
|
|
for (i in seq_along(fields)) {
|
|
field <- fields[i]
|
|
query_string <- glue('from(bucket: "{bucket}") ',
|
|
'|> range(start: -{days}d) ',
|
|
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
|
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
|
data <- influx_connection$query(query_string)
|
|
# Ensure the columns are coerced to consistent types
|
|
# (Optionally add coercion based on your expected types)
|
|
data <- bind_rows(data) %>%
|
|
mutate(value = as.character(`_value`),
|
|
field = `_field`) %>%
|
|
select(time, rt, des, value, field)
|
|
results[[i]] <- data
|
|
}
|
|
# Bind all results together
|
|
metro_raw <- bind_rows(results)
|
|
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
|
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
|
metro_data <- metro_raw %>%
|
|
mutate(time = with_tz(time, "America/Chicago"),
|
|
spd = as.double(spd),
|
|
pdist = as.double(pdist),
|
|
lon = as.double(lon),
|
|
lat = as.double(lat)) %>%
|
|
group_by(origtatripno) %>%
|
|
arrange(time) %>%
|
|
mutate(lag_pdist = lag(pdist),
|
|
lag_time = lag(time)) %>%
|
|
mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280)
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat),
|
|
lon = median(lon),
|
|
spd = median(spd),
|
|
lag_spd = median(lag_spd),
|
|
trip_count = length(unique(origtatripno)))
|
|
metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat, na.rm = TRUE),
|
|
lon = median(lon, na.rm = TRUE),
|
|
spd = median(spd, na.rm = TRUE),
|
|
lag_spd = median(lag_spd, na.rm = TRUE),
|
|
trip_count = length(unique(origtatripno)))
|
|
metro_data_sf <- st_as_sf(metro_data %>% filter(is.double(lat)), coords = c("lon", "lat"), remove = FALSE)
|
|
View(metro_data)
|
|
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lat)), coords = c("lon", "lat"), remove = FALSE)
|
|
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE)
|
|
View(metro_summary)
|
|
nrow(metro_data %>% filter(is.na(lon)))
|
|
metro_summary <- metro_data %>%
|
|
mutate(pdist_bucket = round(pdist / 500) * 500) %>%
|
|
group_by(pdist_bucket, rt, des, pid) %>%
|
|
summarise(lat = median(lat, na.rm = TRUE),
|
|
lon = median(lon, na.rm = TRUE),
|
|
spd = median(spd, na.rm = TRUE),
|
|
lag_spd = median(lag_spd, na.rm = TRUE),
|
|
trip_count = length(unique(origtatripno)))
|
|
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE)
|
|
segments_sf <- metro_summary_sf %>%
|
|
group_by(rt, pid, des) %>%
|
|
arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed
|
|
mutate(
|
|
lead_geom = lead(geometry),
|
|
lead_spd = lead(spd)
|
|
) %>%
|
|
filter(!is.na(lead_geom)) %>%
|
|
# Create a segment for each pair of points
|
|
rowwise() %>%
|
|
mutate(
|
|
segment = st_cast(st_union(geometry, lead_geom), "LINESTRING")
|
|
) %>%
|
|
ungroup() %>%
|
|
as.data.frame() %>%
|
|
select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>%
|
|
st_as_sf()
|
|
ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")),
|
|
aes(x = pdist_bucket,
|
|
y = lag_spd)) +
|
|
geom_point() +
|
|
geom_smooth() +
|
|
facet_grid(paste0(rt, "-", des) ~ .)
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
bbox <- c(left = min(metro_data$lon),
|
|
bottom = min(metro_data$lat),
|
|
right = max(metro_data$lon),
|
|
top = max(metro_data$lat))
|
|
#get basemap
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("469")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
quantile(segments_sf %>% filter(pid %in% c("469") %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1))
|
|
)
|
|
quantile(segments_sf %>% filter(pid %in% c("469") %>% pull(lag_spd)), c(0,0.25, 0.5, 0.75, 1))
|
|
quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1))
|
|
quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1))
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("469")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
|
# get counts of routes
|
|
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
|
View(route_counts)
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("1280")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("469")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|
|
ggmap(basemap) +
|
|
labs(title = "Metro Route Speed",
|
|
subtitle = paste0("averaged between ",
|
|
metro_summary %>% filter(pid %in% c("1280")) %>% pull(trip_count),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_sf(data = segments_sf %>% filter(pid %in% c("1280")),
|
|
inherit.aes = FALSE,
|
|
aes(color = lag_spd),
|
|
linewidth = 1) +
|
|
scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") +
|
|
facet_wrap(paste0(rt, "-", des) ~ .)
|