204 lines
7.5 KiB
R
204 lines
7.5 KiB
R
library(tidyverse)
|
|
library(influxdbclient)
|
|
library(glue)
|
|
library(ggmap)
|
|
library(sf)
|
|
|
|
# parameters needed to make connection to Database
|
|
#token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88)
|
|
#org <- "e2581d54779b077f"
|
|
#bucket <- "madison-metro"
|
|
|
|
token <- substr(read_file(file = 'api_keys/influxdb_madison-metro_new'), 1, 88)
|
|
org <- "32b7fde0efd8a3b3"
|
|
bucket <- "metro_vehicles"
|
|
|
|
|
|
days <- 1
|
|
|
|
influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
|
|
token = token,
|
|
org = org)
|
|
#---
|
|
# Fields to query
|
|
fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno")
|
|
|
|
# An empty list to store results for each field
|
|
results <- vector("list", length(fields))
|
|
|
|
# Loop through each field, get data, and coerce types if needed
|
|
for (i in seq_along(fields)) {
|
|
field <- fields[i]
|
|
|
|
query_string <- glue('from(bucket: "{bucket}") ',
|
|
'|> range(start: -{days}d) ',
|
|
'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")',
|
|
'|> filter(fn: (r) => r["_field"] == "{field}")')
|
|
|
|
data <- influx_connection$query(query_string)
|
|
|
|
# Ensure the columns are coerced to consistent types
|
|
# (Optionally add coercion based on your expected types)
|
|
data <- bind_rows(data) %>%
|
|
mutate(value = as.character(`_value`),
|
|
field = `_field`) %>%
|
|
select(time, rt, pid, vid, value, field)
|
|
|
|
results[[i]] <- data
|
|
}
|
|
|
|
# Bind all results together
|
|
metro_raw <- bind_rows(results)
|
|
|
|
metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>%
|
|
distinct(pid, vid, lat, lon, spd, .keep_all = TRUE)
|
|
|
|
routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc")
|
|
|
|
metro_data <- metro_raw %>%
|
|
mutate(time = with_tz(time, "America/Chicago"),
|
|
spd = as.double(spd),
|
|
pdist = as.double(pdist),
|
|
lon = as.double(lon),
|
|
lat = as.double(lat)) %>%
|
|
mutate(date = date(time)) %>%
|
|
group_by(pid, vid) %>%
|
|
arrange(time) %>%
|
|
mutate(pdist_lag = lag(pdist),
|
|
time_lag = lag(time)) %>%
|
|
ungroup() %>%
|
|
mutate(spd_calc = case_when(pdist_lag > pdist ~ NA,
|
|
pdist_lag <= pdist ~ (pdist - pdist_lag)/as.double(difftime(time, time_lag, units = "hours"))/5280)) %>%
|
|
left_join(routes_categorized, by = "pid")
|
|
|
|
|
|
bucket_feet <- 500
|
|
|
|
lat_round <- bucket_feet/364481.35
|
|
lon_round <- bucket_feet/267203.05
|
|
|
|
metro_summary <- metro_data %>%
|
|
mutate(lat_bucket = round(lat / lat_round) * lat_round,
|
|
lon_bucket = round(lon / lon_round) * lon_round) %>%
|
|
group_by(rt, name, pid, lat_bucket, lon_bucket) %>%
|
|
summarise(spd = median(spd, na.rm = TRUE),
|
|
spd_calc = median(spd_calc, na.rm = TRUE),
|
|
pdist = median(pdist),
|
|
trip_count = length(unique(origtatripno)))
|
|
|
|
metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon), !is.na(lat)), coords = c("lon", "lat"), remove = FALSE)
|
|
metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket), !is.na(lat_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE)
|
|
|
|
metro_segments <- metro_summary %>%
|
|
group_by(rt, pid) %>%
|
|
arrange(pdist) %>%
|
|
mutate(lat_bucket_lag = lag(lat_bucket),
|
|
lon_bucket_lag = lag(lon_bucket)) %>%
|
|
filter(!is.na(lat_bucket) & !is.na(lon_bucket) & !is.na(lat_bucket_lag) & !is.na(lon_bucket_lag)) %>%
|
|
mutate(
|
|
geometry = pmap(list(lat_bucket, lon_bucket, lat_bucket_lag, lon_bucket_lag),
|
|
~st_linestring(matrix(c(..2, ..1, ..4, ..3), ncol = 2, byrow = TRUE)))
|
|
) %>%
|
|
st_as_sf(sf_column_name = "geometry") %>%
|
|
group_by(rt, name, lat_bucket, lon_bucket) %>%
|
|
summarise(spd_calc = weighted.mean(spd_calc, trip_count))
|
|
|
|
# get counts of routes
|
|
route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno)))
|
|
|
|
# make charts
|
|
ggplot(data = metro_summary %>% filter(pid %in% (routes_categorized %>% filter(name %in% c("B_North", "B_South")) %>% pull (pid))),
|
|
aes(x = pdist,
|
|
y = spd_calc)) +
|
|
geom_point() +
|
|
geom_smooth() +
|
|
facet_grid(name ~ .)
|
|
|
|
ggplot(data = metro_summary %>% filter(!is.na(name)),
|
|
aes(x = name,
|
|
y = spd_calc)) +
|
|
geom_boxplot()
|
|
|
|
register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36))
|
|
|
|
bbox <- c(left = min(metro_data$lon, na.rm = TRUE),
|
|
bottom = min(metro_data$lat, na.rm = TRUE),
|
|
right = max(metro_data$lon, na.rm = TRUE),
|
|
top = max(metro_data$lat, na.rm = TRUE))
|
|
|
|
#get basemap
|
|
basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite")
|
|
|
|
quantile(metro_segments %>% filter(name %in% c("A_West")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE)
|
|
|
|
for (route in unique(routes_categorized$name)){
|
|
route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid)
|
|
ggmap(basemap) +
|
|
labs(title = paste0("Metro Route Speed - ", route),
|
|
subtitle = paste0("averaged between ",
|
|
sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
|
" bus trips - ",
|
|
min(date(metro_data$time)),
|
|
" to ",
|
|
max(date(metro_data$time))),
|
|
x = NULL,
|
|
y = NULL) +
|
|
theme(axis.text=element_blank(),
|
|
axis.ticks=element_blank(),
|
|
plot.caption = element_text(color = "grey")) +
|
|
geom_tile(data = metro_summary %>%
|
|
filter(name %in% route) %>%
|
|
group_by(lon_bucket, lat_bucket) %>%
|
|
summarise(spd_calc = weighted.mean(spd_calc, trip_count)),
|
|
inherit.aes = FALSE,
|
|
aes(x = lon_bucket,
|
|
y = lat_bucket,
|
|
fill = spd_calc,
|
|
height = lat_round,
|
|
width = lon_round)) +
|
|
scale_fill_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|
|
ggsave(file = paste0("figures/",
|
|
route,
|
|
"_map.pdf"),
|
|
title = paste0("Metro Route Speed - ", route),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
|
|
ggplot(data = metro_data %>% filter(name %in% route)) +
|
|
geom_boxplot(aes(x = date,
|
|
y = spd_calc,
|
|
group = date))
|
|
ggsave(file = paste0("figures/",
|
|
route,
|
|
"_date.pdf"),
|
|
title = paste0("Metro Route Speed - ", route),
|
|
device = pdf,
|
|
height = 8.5,
|
|
width = 11,
|
|
units = "in",
|
|
create.dir = TRUE)
|
|
}
|
|
|
|
|
|
# ggmap(basemap) +
|
|
# labs(title = paste0("Metro Route Speed - ", route),
|
|
# subtitle = paste0("averaged between ",
|
|
# sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)),
|
|
# " bus trips - ",
|
|
# min(date(metro_data$time)),
|
|
# " to ",
|
|
# max(date(metro_data$time))),
|
|
# x = NULL,
|
|
# y = NULL) +
|
|
# theme(axis.text=element_blank(),
|
|
# axis.ticks=element_blank(),
|
|
# plot.caption = element_text(color = "grey")) +
|
|
# geom_sf(data = metro_segments %>% filter(name %in% route),
|
|
# inherit.aes = FALSE,
|
|
# aes(color = spd_calc),
|
|
# linewidth = 1) +
|
|
# scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)")
|