From e59afa8c599ed5c63ea61ea99778b3fe7a06a47e Mon Sep 17 00:00:00 2001 From: Ben Varick Date: Wed, 20 Nov 2024 09:47:26 -0600 Subject: [PATCH] removed .Rhistory --- .Rhistory | 1004 ++++++++++++++++++++++++++-------------------------- .gitignore | 1 + 2 files changed, 503 insertions(+), 502 deletions(-) diff --git a/.Rhistory b/.Rhistory index 8cd9e28..16d0144 100644 --- a/.Rhistory +++ b/.Rhistory @@ -1,512 +1,512 @@ -geom_sf(data = segments_sf %>% filter(pid %in% c("422")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count) -metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE) -metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE) -segments_sf <- metro_summary_sf %>% -group_by(rt, pid, des) %>% -arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed -mutate( -lead_geom = lead(geometry), -lead_spd = lead(spd) -) %>% -filter(!is.na(lead_geom)) %>% -# Create a segment for each pair of points -rowwise() %>% -mutate( -segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") -) %>% -ungroup() %>% -as.data.frame() %>% -select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% -st_as_sf() -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("422")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("422")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("422")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -metro_summary %>% filter(pid %in% c("422")) -max(metro_summary %>% filter(pid %in% c("422")) %>% pull(trip_count)) -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("469")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -library(tidyverse) -library(influxdbclient) -library(glue) -library(ggmap) -library(sf) -# parameters needed to make connection to Database -token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) -org <- "e2581d54779b077f" -bucket <- "madison-metro" -days <- 1 -influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", -token = token, -org = org) -#--- -# Fields you want to query -fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") -# Creating an empty list to store results for each field -results <- vector("list", length(fields)) -# Loop through each field, get data, and coerce types if needed -for (i in seq_along(fields)) { -field <- fields[i] -query_string <- glue('from(bucket: "{bucket}") ', -'|> range(start: -{days}d) ', -'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', -'|> filter(fn: (r) => r["_field"] == "{field}")') -data <- influx_connection$query(query_string) -# Ensure the columns are coerced to consistent types -# (Optionally add coercion based on your expected types) -data <- bind_rows(data) %>% -mutate(value = as.character(`_value`), -field = `_field`) %>% -select(time, rt, des, value, field) -results[[i]] <- data -} -# Bind all results together -metro_raw <- bind_rows(results) -metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% -distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) -metro_data <- metro_raw %>% -mutate(time = with_tz(time, "America/Chicago"), -spd = as.double(spd), -pdist = as.double(pdist), -lon = as.double(lon), -lat = as.double(lat)) %>% -group_by(origtatripno) %>% -arrange(time) %>% -mutate(lag_pdist = lag(pdist), -lag_time = lag(time)) %>% -mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) -metro_summary <- metro_data %>% -mutate(pdist_bucket = round(pdist / 500) * 500) %>% -group_by(pdist_bucket, rt, des, pid) %>% -summarise(lat = median(lat), -lon = median(lon), -spd = median(spd), -lag_spd = median(lag_spd), -trip_count = length(unique(origtatripno))) -metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE) -metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE) -segments_sf <- metro_summary_sf %>% -group_by(rt, pid, des) %>% -arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed -mutate( -lead_geom = lead(geometry), -lead_spd = lead(spd) -) %>% -filter(!is.na(lead_geom)) %>% -# Create a segment for each pair of points -rowwise() %>% -mutate( -segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") -) %>% -ungroup() %>% -as.data.frame() %>% -select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% -st_as_sf() -ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), -aes(x = pdist_bucket, -y = lag_spd)) + -geom_point() + -geom_smooth() + -facet_grid(paste0(rt, "-", des) ~ .) -register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) -bbox <- c(left = min(metro_data$lon), -bottom = min(metro_data$lat), -right = max(metro_data$lon), -top = max(metro_data$lat)) -#get basemap -basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("469")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -library(tidyverse) -library(influxdbclient) -library(glue) -library(ggmap) -library(sf) -# parameters needed to make connection to Database -token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) -org <- "e2581d54779b077f" -bucket <- "madison-metro" -days <- 1 -influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", -token = token, -org = org) -#--- -# Fields you want to query -fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") -# Creating an empty list to store results for each field -results <- vector("list", length(fields)) -# Loop through each field, get data, and coerce types if needed -for (i in seq_along(fields)) { -field <- fields[i] -query_string <- glue('from(bucket: "{bucket}") ', -'|> range(start: -{days}d) ', -'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', -'|> filter(fn: (r) => r["_field"] == "{field}")') -data <- influx_connection$query(query_string) -# Ensure the columns are coerced to consistent types -# (Optionally add coercion based on your expected types) -data <- bind_rows(data) %>% -mutate(value = as.character(`_value`), -field = `_field`) %>% -select(time, rt, des, value, field) -results[[i]] <- data -} -# Bind all results together -metro_raw <- bind_rows(results) -metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% -distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) -metro_data <- metro_raw %>% -mutate(time = with_tz(time, "America/Chicago"), -spd = as.double(spd), -pdist = as.double(pdist), -lon = as.double(lon), -lat = as.double(lat)) %>% -group_by(origtatripno) %>% -arrange(time) %>% -mutate(lag_pdist = lag(pdist), -lag_time = lag(time)) %>% -mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) -metro_summary <- metro_data %>% -mutate(pdist_bucket = round(pdist / 500) * 500) %>% -group_by(pdist_bucket, rt, des, pid) %>% -summarise(lat = median(lat), -lon = median(lon), -spd = median(spd), -lag_spd = median(lag_spd), -trip_count = length(unique(origtatripno))) -metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE) -metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE) -library(tidyverse) -library(influxdbclient) -library(glue) -library(ggmap) -library(sf) -# parameters needed to make connection to Database -token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) -org <- "e2581d54779b077f" -bucket <- "madison-metro" -days <- 1 -influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", -token = token, -org = org) -#--- -# Fields you want to query -fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") -# Creating an empty list to store results for each field -results <- vector("list", length(fields)) -# Loop through each field, get data, and coerce types if needed -for (i in seq_along(fields)) { -field <- fields[i] -query_string <- glue('from(bucket: "{bucket}") ', -'|> range(start: -{days}d) ', -'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', -'|> filter(fn: (r) => r["_field"] == "{field}")') -data <- influx_connection$query(query_string) -# Ensure the columns are coerced to consistent types -# (Optionally add coercion based on your expected types) -data <- bind_rows(data) %>% -mutate(value = as.character(`_value`), -field = `_field`) %>% -select(time, rt, des, value, field) -results[[i]] <- data -} -# Bind all results together -metro_raw <- bind_rows(results) -metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% -distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) -metro_data <- metro_raw %>% -mutate(time = with_tz(time, "America/Chicago"), -spd = as.double(spd), -pdist = as.double(pdist), -lon = as.double(lon), -lat = as.double(lat)) %>% -group_by(origtatripno) %>% -arrange(time) %>% -mutate(lag_pdist = lag(pdist), -lag_time = lag(time)) %>% -mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) -metro_summary <- metro_data %>% -mutate(pdist_bucket = round(pdist / 500) * 500) %>% -group_by(pdist_bucket, rt, des, pid) %>% -summarise(lat = median(lat), -lon = median(lon), -spd = median(spd), -lag_spd = median(lag_spd), -trip_count = length(unique(origtatripno))) -metro_data_sf <- st_as_sf(metro_data, coords = c("lon", "lat"), remove = FALSE) -metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE) -metro_summary <- metro_data %>% -mutate(pdist_bucket = round(pdist / 500) * 500) %>% -group_by(pdist_bucket, rt, des, pid) %>% -summarise(lat = median(lat, na.rm = TRUE), -lon = median(lon, na.rm = TRUE), -spd = median(spd, na.rm = TRUE), -lag_spd = median(lag_spd, na.rm = TRUE), -trip_count = length(unique(origtatripno))) -metro_data_sf <- st_as_sf(metro_data %>% filter(is.double(lat)), coords = c("lon", "lat"), remove = FALSE) -View(metro_data) -metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lat)), coords = c("lon", "lat"), remove = FALSE) -metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) -metro_summary_sf <- st_as_sf(metro_summary, coords = c("lon", "lat"), remove = FALSE) -View(metro_summary) -nrow(metro_data %>% filter(is.na(lon))) -metro_summary <- metro_data %>% -mutate(pdist_bucket = round(pdist / 500) * 500) %>% -group_by(pdist_bucket, rt, des, pid) %>% -summarise(lat = median(lat, na.rm = TRUE), -lon = median(lon, na.rm = TRUE), -spd = median(spd, na.rm = TRUE), -lag_spd = median(lag_spd, na.rm = TRUE), -trip_count = length(unique(origtatripno))) -metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) -metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) -segments_sf <- metro_summary_sf %>% -group_by(rt, pid, des) %>% -arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed -mutate( -lead_geom = lead(geometry), -lead_spd = lead(spd) -) %>% -filter(!is.na(lead_geom)) %>% -# Create a segment for each pair of points -rowwise() %>% -mutate( -segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") -) %>% -ungroup() %>% -as.data.frame() %>% -select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% -st_as_sf() -ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), -aes(x = pdist_bucket, -y = lag_spd)) + -geom_point() + -geom_smooth() + -facet_grid(paste0(rt, "-", des) ~ .) -register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) -bbox <- c(left = min(metro_data$lon), -bottom = min(metro_data$lat), -right = max(metro_data$lon), -top = max(metro_data$lat)) -#get basemap -basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("469")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -quantile(segments_sf %>% filter(pid %in% c("469") %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1)) -) -quantile(segments_sf %>% filter(pid %in% c("469") %>% pull(lag_spd)), c(0,0.25, 0.5, 0.75, 1)) -quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1)) -quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1)) -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("469")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("469")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) -# get counts of routes -route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) -View(route_counts) -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("1280")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("469")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -ggmap(basemap) + -labs(title = "Metro Route Speed", -subtitle = paste0("averaged between ", -metro_summary %>% filter(pid %in% c("1280")) %>% pull(trip_count), -" bus trips - ", -min(date(metro_data$time)), -" to ", -max(date(metro_data$time))), -x = NULL, -y = NULL) + -theme(axis.text=element_blank(), -axis.ticks=element_blank(), -plot.caption = element_text(color = "grey")) + -geom_sf(data = segments_sf %>% filter(pid %in% c("1280")), -inherit.aes = FALSE, -aes(color = lag_spd), -linewidth = 1) + -scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + -facet_wrap(paste0(rt, "-", des) ~ .) -library(tidyverse) -library(influxdbclient) -library(glue) -library(ggmap) -library(sf) -# parameters needed to make connection to Database -token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) -org <- "e2581d54779b077f" -bucket <- "madison-metro" -days <- 1 -influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", -token = token, -org = org) -#--- -# Fields you want to query -fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") -# Creating an empty list to store results for each field -results <- vector("list", length(fields)) -# Loop through each field, get data, and coerce types if needed -for (i in seq_along(fields)) { -field <- fields[i] -query_string <- glue('from(bucket: "{bucket}") ', -'|> range(start: -{days}d) ', -'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', -'|> filter(fn: (r) => r["_field"] == "{field}")') -data <- influx_connection$query(query_string) -# Ensure the columns are coerced to consistent types -# (Optionally add coercion based on your expected types) -data <- bind_rows(data) %>% -mutate(value = as.character(`_value`), -field = `_field`) %>% -select(time, rt, des, value, field) -results[[i]] <- data -} -# Bind all results together -metro_raw <- bind_rows(results) -metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% -distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) -metro_data <- metro_raw %>% -mutate(time = with_tz(time, "America/Chicago"), -spd = as.double(spd), -pdist = as.double(pdist), -lon = as.double(lon), -lat = as.double(lat)) %>% -group_by(origtatripno) %>% -arrange(time) %>% -mutate(lag_pdist = lag(pdist), -lag_time = lag(time)) %>% mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") -bucket_lat <- 364481.35/200 -bucket_lon <- 267203.05/200 +#--- +# Fields you want to query +fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno", "tmstmp") +# Creating an empty list to store results for each field +results <- vector("list", length(fields)) +# Loop through each field, get data, and coerce types if needed +for (i in seq_along(fields)) { +field <- fields[i] +query_string <- glue('from(bucket: "{bucket}") ', +'|> range(start: -{days}d) ', +'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', +'|> filter(fn: (r) => r["_field"] == "{field}")') +data <- influx_connection$query(query_string) +# Ensure the columns are coerced to consistent types +# (Optionally add coercion based on your expected types) +data <- bind_rows(data) %>% +mutate(value = as.character(`_value`), +field = `_field`) %>% +select(time, rt, pid, vid, value, field) +results[[i]] <- data +} +query_string <- glue('from(bucket: "{bucket}") ', +'|> range(start: -{days}d) ', +'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', +'|> filter(fn: (r) => r["_field"] == "{field}")') +data <- influx_connection$query(query_string) +field <- spd +field <- "spd" +query_string <- glue('from(bucket: "{bucket}") ', +'|> range(start: -{days}d) ', +'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', +'|> filter(fn: (r) => r["_field"] == "{field}")') +data <- influx_connection$query(query_string) +View(data) +#--- +# Fields you want to query +fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") +# Creating an empty list to store results for each field +results <- vector("list", length(fields)) +# Loop through each field, get data, and coerce types if needed +for (i in seq_along(fields)) { +field <- fields[i] +query_string <- glue('from(bucket: "{bucket}") ', +'|> range(start: -{days}d) ', +'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', +'|> filter(fn: (r) => r["_field"] == "{field}")') +data <- influx_connection$query(query_string) +# Ensure the columns are coerced to consistent types +# (Optionally add coercion based on your expected types) +data <- bind_rows(data) %>% +mutate(value = as.character(`_value`), +field = `_field`) %>% +select(time, rt, pid, vid, value, field) +results[[i]] <- data +} +# Bind all results together +metro_raw <- bind_rows(results) +metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% +distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) +metro_data <- metro_raw %>% +mutate(time = with_tz(time, "America/Chicago"), +spd = as.double(spd), +pdist = as.double(pdist), +lon = as.double(lon), +lat = as.double(lat)) %>% +group_by(origtatripno) %>% +arrange(time) %>% +mutate(lag_pdist = lag(pdist), +lag_time = lag(time)) %>% +mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) +1/364481.35 +bucket_feet <- 200 +bucket_lat <- bucket_feet/364481.35 +bucket_lon <- bucket_feet/267203.05 +bucket_feet <- 200 +lat_round <- bucket_feet/364481.35 +lon_round <- bucket_feet/267203.05 metro_summary <- metro_data %>% left_join(routes_categorized, by = "pid") %>% -mutate(lat_bucket = round(lat / 200) * 100) %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% group_by(pdist_bucket, rt, des, pid) %>% summarise(lat = median(lat, na.rm = TRUE), lon = median(lon, na.rm = TRUE), spd = median(spd, na.rm = TRUE), lag_spd = median(lag_spd, na.rm = TRUE), trip_count = length(unique(origtatripno))) +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat = median(lat, na.rm = TRUE), +lon = median(lon, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +lag_spd = median(lag_spd, na.rm = TRUE), +trip_count = length(unique(origtatripno))) +View(metro_summary) +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), +lon_bucket = median(lon_bucket, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +lag_spd = median(lag_spd, na.rm = TRUE), +trip_count = length(unique(origtatripno))) +metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(pid, pdist_bucket) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(vid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des, vid) %>% +arrange(vid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des, vid) %>% +arrange(pid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(pid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, lag_spd) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(pid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), +lon_bucket = median(lon_bucket, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +lag_spd = median(lag_spd, na.rm = TRUE), +trip_count = length(unique(origtatripno))) +metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid, des) %>% +arrange(pid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) +View(metro_data_sf) +# get counts of routes +route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), +lon_bucket = median(lon_bucket, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +lag_spd = median(lag_spd, na.rm = TRUE), +pdist = median(pdist), +trip_count = length(unique(origtatripno))) +metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +# make charts +ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), +aes(x = pdist, +y = lag_spd)) + +geom_point() + +geom_smooth() + +facet_grid(paste0(rt, "-", des) ~ .) +metro_data <- metro_raw %>% +mutate(time = with_tz(time, "America/Chicago"), +spd = as.double(spd), +pdist = as.double(pdist), +lon = as.double(lon), +lat = as.double(lat)) %>% +group_by(origtatripno) %>% +arrange(time) %>% +mutate(lag_pdist = lag(pdist), +lag_time = lag(time)) %>% +mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) +routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") +bucket_feet <- 200 +lat_round <- bucket_feet/364481.35 +lon_round <- bucket_feet/267203.05 +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), +lon_bucket = median(lon_bucket, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +spd_calc = median(spd_calc, na.rm = TRUE), +pdist = median(pdist), +trip_count = length(unique(origtatripno))) +metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid) %>% +arrange(pid, time) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% +st_as_sf() +segments_sf <- metro_summary_sf %>% +group_by(rt, pid) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid) %>% +arrange(pid, time) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid) %>% +arrange(pid, pdist) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% +st_as_sf() +# get counts of routes +route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) +# make charts +ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), +aes(x = pdist, +y = spd_calc)) + +geom_point() + +geom_smooth() + +facet_grid(paste0(rt, "-", des) ~ .) +register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) +bbox <- c(left = min(metro_data$lon), +bottom = min(metro_data$lat), +right = max(metro_data$lon), +top = max(metro_data$lat)) +#get basemap +basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") +# A West +quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1)) +# A West +quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) +for (route in unique(routes_categorized$name)){ +route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) +ggmap(basemap) + +labs(title = paste0("Metro Route Speed - ", route), +subtitle = paste0("averaged between ", +sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), +" bus trips - ", +min(date(metro_data$time)), +" to ", +max(date(metro_data$time))), +x = NULL, +y = NULL) + +theme(axis.text=element_blank(), +axis.ticks=element_blank(), +plot.caption = element_text(color = "grey")) + +geom_sf(data = segments_sf %>% filter(pid %in% route_focus), +inherit.aes = FALSE, +aes(color = spd_calc), +linewidth = 1) + +scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") +ggsave(file = paste0("figures/", +route, +".pdf"), +title = paste0("Metro Route Speed - ", route), +device = pdf, +height = 8.5, +width = 11, +units = "in", +create.dir = TRUE) +} +library(tidyverse) +library(influxdbclient) +library(glue) +library(ggmap) +library(sf) +# parameters needed to make connection to Database +token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) +org <- "e2581d54779b077f" +bucket <- "madison-metro" +days <- 1 +influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", +token = token, +org = org) +#--- +# Fields you want to query +fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") +# Creating an empty list to store results for each field +results <- vector("list", length(fields)) +# Loop through each field, get data, and coerce types if needed +for (i in seq_along(fields)) { +field <- fields[i] +query_string <- glue('from(bucket: "{bucket}") ', +'|> range(start: -{days}d) ', +'|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', +'|> filter(fn: (r) => r["_field"] == "{field}")') +data <- influx_connection$query(query_string) +# Ensure the columns are coerced to consistent types +# (Optionally add coercion based on your expected types) +data <- bind_rows(data) %>% +mutate(value = as.character(`_value`), +field = `_field`) %>% +select(time, rt, pid, vid, value, field) +results[[i]] <- data +} +# Bind all results together +metro_raw <- bind_rows(results) +metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% +distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) +metro_data <- metro_raw %>% +mutate(time = with_tz(time, "America/Chicago"), +spd = as.double(spd), +pdist = as.double(pdist), +lon = as.double(lon), +lat = as.double(lat)) %>% +group_by(pid, vid) %>% +arrange(time) %>% +mutate(lag_pdist = lag(pdist), +lag_time = lag(time)) %>% +mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) +routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") +bucket_feet <- 200 +lat_round <- bucket_feet/364481.35 +lon_round <- bucket_feet/267203.05 +metro_summary <- metro_data %>% +left_join(routes_categorized, by = "pid") %>% +mutate(lat_bucket = round(lat / lat_round) * lat_round, +lon_bucket = round(lon / lon_round) * lon_round) %>% +group_by(lat_bucket, lon_bucket, rt, des, pid) %>% +summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), +lon_bucket = median(lon_bucket, na.rm = TRUE), +spd = median(spd, na.rm = TRUE), +spd_calc = median(spd_calc, na.rm = TRUE), +pdist = median(pdist), +trip_count = length(unique(origtatripno))) +metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) +metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) +segments_sf <- metro_summary_sf %>% +group_by(rt, pid) %>% +arrange(pid, pdist) %>% # Ensure points within each route are sorted if needed +mutate( +lead_geom = lead(geometry), +lead_spd = lead(spd) +) %>% +filter(!is.na(lead_geom)) %>% +# Create a segment for each pair of points +rowwise() %>% +mutate( +segment = st_cast(st_union(geometry, lead_geom), "LINESTRING") +) %>% +ungroup() %>% +as.data.frame() %>% +select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% +st_as_sf() +# get counts of routes +route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count = length(unique(origtatripno))) +# make charts +ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), +aes(x = pdist, +y = spd_calc)) + +geom_point() + +geom_smooth() + +facet_grid(paste0(rt, "-", des) ~ .) +register_stadiamaps(key = substr(read_file(file = "api_keys/stadia_api_key"), 1, 36)) +bbox <- c(left = min(metro_data$lon), +bottom = min(metro_data$lat), +right = max(metro_data$lon), +top = max(metro_data$lat)) +#get basemap +basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") +# A West +quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) +for (route in unique(routes_categorized$name)){ +route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) +ggmap(basemap) + +labs(title = paste0("Metro Route Speed - ", route), +subtitle = paste0("averaged between ", +sum(route_counts %>% filter(pid %in% route_focus) %>% pull(route_count)), +" bus trips - ", +min(date(metro_data$time)), +" to ", +max(date(metro_data$time))), +x = NULL, +y = NULL) + +theme(axis.text=element_blank(), +axis.ticks=element_blank(), +plot.caption = element_text(color = "grey")) + +geom_sf(data = segments_sf %>% filter(pid %in% route_focus), +inherit.aes = FALSE, +aes(color = spd_calc), +linewidth = 1) + +scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") +ggsave(file = paste0("figures/", +route, +".pdf"), +title = paste0("Metro Route Speed - ", route), +device = pdf, +height = 8.5, +width = 11, +units = "in", +create.dir = TRUE) +} diff --git a/.gitignore b/.gitignore index 35a6d9b..5a155c3 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,5 @@ api_keys/* figures/* +.Rhistory .Rproj.user