edits to analysis
This commit is contained in:
		
							parent
							
								
									c98fe88d40
								
							
						
					
					
						commit
						ba29e58466
					
				
					 2 changed files with 84 additions and 80 deletions
				
			
		
							
								
								
									
										122
									
								
								.Rhistory
									
										
									
									
									
								
							
							
						
						
									
										122
									
								
								.Rhistory
									
										
									
									
									
								
							|  | @ -1,64 +1,3 @@ | ||||||
| labs(title = "Metro Route Speed", |  | ||||||
| subtitle = paste0("averaged between ", |  | ||||||
| length(unique(metro_data %>% filter(pid %in% c("422")) %>% pull(origtatripno))), |  | ||||||
| " bus trips - ", |  | ||||||
| min(date(metro_data$time)), |  | ||||||
| " to ", |  | ||||||
| max(date(metro_data$time))), |  | ||||||
| x = NULL, |  | ||||||
| y = NULL) + |  | ||||||
| theme(axis.text=element_blank(), |  | ||||||
| axis.ticks=element_blank(), |  | ||||||
| plot.caption = element_text(color = "grey")) + |  | ||||||
| geom_sf(data = segments_sf %>% filter(pid %in% c("422")), |  | ||||||
| inherit.aes = FALSE, |  | ||||||
| aes(color = lag_spd), |  | ||||||
| linewidth = 1) + |  | ||||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + |  | ||||||
| facet_wrap(paste0(rt, "-", des) ~ .) |  | ||||||
| View(metro_summary) |  | ||||||
| metro_summary <- metro_data %>% |  | ||||||
| mutate(pdist_bucket = round(pdist / 500) * 500) %>% |  | ||||||
| group_by(pdist_bucket, rt, des, pid) %>% |  | ||||||
| summarise(lat = median(lat), |  | ||||||
| lon = median(lon), |  | ||||||
| spd = median(spd), |  | ||||||
| lag_spd = median(lag_spd), |  | ||||||
| trip_count = n()) |  | ||||||
| metro_summary <- metro_data %>% |  | ||||||
| mutate(pdist_bucket = round(pdist / 500) * 500) %>% |  | ||||||
| group_by(pdist_bucket, rt, des, pid, origtatripno) %>% |  | ||||||
| summarise(lat = median(lat), |  | ||||||
| lon = median(lon), |  | ||||||
| spd = median(spd), |  | ||||||
| lag_spd = median(lag_spd), |  | ||||||
| trip_count = n()) |  | ||||||
| trip_count = length(unique(origtatripno)) |  | ||||||
| metro_summary <- metro_data %>% |  | ||||||
| mutate(pdist_bucket = round(pdist / 500) * 500) %>% |  | ||||||
| group_by(pdist_bucket, rt, des, pid) %>% |  | ||||||
| summarise(lat = median(lat), |  | ||||||
| lon = median(lon), |  | ||||||
| spd = median(spd), |  | ||||||
| lag_spd = median(lag_spd), |  | ||||||
| trip_count = length(unique(origtatripno))) |  | ||||||
| ggmap(basemap) + |  | ||||||
| labs(title = "Metro Route Speed", |  | ||||||
| subtitle = paste0("averaged between ", |  | ||||||
| segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count))), |  | ||||||
| ggmap(basemap) + |  | ||||||
| labs(title = "Metro Route Speed", |  | ||||||
| subtitle = paste0("averaged between ", |  | ||||||
| segments_sf %>% filter(pid %in% c("422")) %>% pull(trip_count), |  | ||||||
| " bus trips - ", |  | ||||||
| min(date(metro_data$time)), |  | ||||||
| " to ", |  | ||||||
| max(date(metro_data$time))), |  | ||||||
| x = NULL, |  | ||||||
| y = NULL) + |  | ||||||
| theme(axis.text=element_blank(), |  | ||||||
| axis.ticks=element_blank(), |  | ||||||
| plot.caption = element_text(color = "grey")) + |  | ||||||
| geom_sf(data = segments_sf %>% filter(pid %in% c("422")), | geom_sf(data = segments_sf %>% filter(pid %in% c("422")), | ||||||
| inherit.aes = FALSE, | inherit.aes = FALSE, | ||||||
| aes(color = lag_spd), | aes(color = lag_spd), | ||||||
|  | @ -510,3 +449,64 @@ aes(color = lag_spd), | ||||||
| linewidth = 1) + | linewidth = 1) + | ||||||
| scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + | scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed\n(calculated with consecutive points)") + | ||||||
| facet_wrap(paste0(rt, "-", des) ~ .) | facet_wrap(paste0(rt, "-", des) ~ .) | ||||||
|  | library(tidyverse) | ||||||
|  | library(influxdbclient) | ||||||
|  | library(glue) | ||||||
|  | library(ggmap) | ||||||
|  | library(sf) | ||||||
|  | # parameters needed to make connection to Database | ||||||
|  | token <- substr(read_file(file = 'api_keys/influxdb_madison-metro'), 1, 88) | ||||||
|  | org <- "e2581d54779b077f" | ||||||
|  | bucket <- "madison-metro" | ||||||
|  | days <- 1 | ||||||
|  | influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", | ||||||
|  | token = token, | ||||||
|  | org = org) | ||||||
|  | #--- | ||||||
|  | # Fields you want to query | ||||||
|  | fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") | ||||||
|  | # Creating an empty list to store results for each field | ||||||
|  | results <- vector("list", length(fields)) | ||||||
|  | # Loop through each field, get data, and coerce types if needed | ||||||
|  | for (i in seq_along(fields)) { | ||||||
|  | field <- fields[i] | ||||||
|  | query_string <- glue('from(bucket: "{bucket}") ', | ||||||
|  | '|> range(start: -{days}d) ', | ||||||
|  | '|> filter(fn: (r) => r["_measurement"] == "vehicle_data")', | ||||||
|  | '|> filter(fn: (r) => r["_field"] == "{field}")') | ||||||
|  | data <- influx_connection$query(query_string) | ||||||
|  | # Ensure the columns are coerced to consistent types | ||||||
|  | # (Optionally add coercion based on your expected types) | ||||||
|  | data <- bind_rows(data) %>% | ||||||
|  | mutate(value = as.character(`_value`), | ||||||
|  | field = `_field`) %>% | ||||||
|  | select(time, rt, des, value, field) | ||||||
|  | results[[i]] <- data | ||||||
|  | } | ||||||
|  | # Bind all results together | ||||||
|  | metro_raw <- bind_rows(results) | ||||||
|  | metro_raw <- pivot_wider(metro_raw, values_from = value, names_from = field) %>% | ||||||
|  | distinct(pid, vid, lat, lon, spd, .keep_all = TRUE) | ||||||
|  | metro_data <- metro_raw %>% | ||||||
|  | mutate(time = with_tz(time, "America/Chicago"), | ||||||
|  | spd = as.double(spd), | ||||||
|  | pdist = as.double(pdist), | ||||||
|  | lon = as.double(lon), | ||||||
|  | lat = as.double(lat)) %>% | ||||||
|  | group_by(origtatripno) %>% | ||||||
|  | arrange(time) %>% | ||||||
|  | mutate(lag_pdist = lag(pdist), | ||||||
|  | lag_time = lag(time)) %>% | ||||||
|  | mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||||
|  | routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||||
|  | bucket_lat <- 364481.35/200 | ||||||
|  | bucket_lon <- 267203.05/200 | ||||||
|  | metro_summary <- metro_data %>% | ||||||
|  | left_join(routes_categorized, by = "pid") %>% | ||||||
|  | mutate(lat_bucket = round(lat / 200) * 100) %>% | ||||||
|  | group_by(pdist_bucket, rt, des, pid) %>% | ||||||
|  | summarise(lat = median(lat, na.rm = TRUE), | ||||||
|  | lon = median(lon, na.rm = TRUE), | ||||||
|  | spd = median(spd, na.rm = TRUE), | ||||||
|  | lag_spd = median(lag_spd, na.rm = TRUE), | ||||||
|  | trip_count = length(unique(origtatripno))) | ||||||
|  |  | ||||||
|  | @ -16,7 +16,7 @@ influx_connection <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net" | ||||||
|                                 org = org) |                                 org = org) | ||||||
| #--- | #--- | ||||||
| # Fields you want to query | # Fields you want to query | ||||||
| fields <- c("spd", "pdist", "pid", "lon", "lat", "vid", "dly", "origtatripno") | fields <- c("des", "spd", "pdist", "lon", "lat", "dly", "origtatripno") | ||||||
| 
 | 
 | ||||||
| # Creating an empty list to store results for each field | # Creating an empty list to store results for each field | ||||||
| results <- vector("list", length(fields)) | results <- vector("list", length(fields)) | ||||||
|  | @ -37,7 +37,7 @@ for (i in seq_along(fields)) { | ||||||
|   data <- bind_rows(data) %>% |   data <- bind_rows(data) %>% | ||||||
|     mutate(value = as.character(`_value`), |     mutate(value = as.character(`_value`), | ||||||
|            field = `_field`) %>%  |            field = `_field`) %>%  | ||||||
|     select(time, rt, des, value, field) |     select(time, rt, pid, vid, value, field) | ||||||
|    |    | ||||||
|   results[[i]] <- data |   results[[i]] <- data | ||||||
| } | } | ||||||
|  | @ -54,33 +54,37 @@ metro_data <- metro_raw %>% | ||||||
|          pdist = as.double(pdist), |          pdist = as.double(pdist), | ||||||
|          lon = as.double(lon), |          lon = as.double(lon), | ||||||
|          lat = as.double(lat)) %>% |          lat = as.double(lat)) %>% | ||||||
|   group_by(origtatripno) %>% |   group_by(pid, vid) %>% | ||||||
|   arrange(time) %>% |   arrange(time) %>% | ||||||
|   mutate(lag_pdist = lag(pdist), |   mutate(lag_pdist = lag(pdist), | ||||||
|          lag_time = lag(time)) %>% |          lag_time = lag(time)) %>% | ||||||
|   mutate(lag_spd = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) |   mutate(spd_calc = (pdist - lag_pdist)/as.double(difftime(time, lag_time, units = "hours"))/5280) | ||||||
| 
 | 
 | ||||||
| routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | routes_categorized <- read_csv(file = "routes_categorized.csv", col_types = "cc") | ||||||
| 
 | 
 | ||||||
| bucket_lat <- 364481.35/200 | bucket_feet <- 200 | ||||||
| bucket_lon <- 267203.05/200 | 
 | ||||||
|  | lat_round <- bucket_feet/364481.35 | ||||||
|  | lon_round <- bucket_feet/267203.05 | ||||||
| 
 | 
 | ||||||
| metro_summary <- metro_data %>% | metro_summary <- metro_data %>% | ||||||
|   left_join(routes_categorized, by = "pid") %>% |   left_join(routes_categorized, by = "pid") %>% | ||||||
|   mutate(lat_bucket = round(lat / 200) * 100) %>% |   mutate(lat_bucket = round(lat / lat_round) * lat_round, | ||||||
|   group_by(pdist_bucket, rt, des, pid) %>% |          lon_bucket = round(lon / lon_round) * lon_round) %>% | ||||||
|   summarise(lat = median(lat, na.rm = TRUE), |   group_by(lat_bucket, lon_bucket, rt, des, pid) %>% | ||||||
|             lon = median(lon, na.rm = TRUE), |   summarise(lat_bucket = median(lat_bucket, na.rm = TRUE), | ||||||
|  |             lon_bucket = median(lon_bucket, na.rm = TRUE), | ||||||
|             spd = median(spd, na.rm = TRUE), |             spd = median(spd, na.rm = TRUE), | ||||||
|             lag_spd = median(lag_spd, na.rm = TRUE), |             spd_calc = median(spd_calc, na.rm = TRUE), | ||||||
|  |             pdist = median(pdist), | ||||||
|             trip_count = length(unique(origtatripno))) |             trip_count = length(unique(origtatripno))) | ||||||
|    |    | ||||||
| metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | metro_data_sf <- st_as_sf(metro_data %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | ||||||
| metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon)), coords = c("lon", "lat"), remove = FALSE) | metro_summary_sf <- st_as_sf(metro_summary %>% filter(!is.na(lon_bucket)), coords = c("lon_bucket", "lat_bucket"), remove = FALSE) | ||||||
| 
 | 
 | ||||||
| segments_sf <- metro_summary_sf %>% | segments_sf <- metro_summary_sf %>% | ||||||
|   group_by(rt, pid, des) %>% |   group_by(rt, pid) %>% | ||||||
|   arrange(pid, pdist_bucket) %>%  # Ensure points within each route are sorted if needed |   arrange(pid, pdist) %>%  # Ensure points within each route are sorted if needed | ||||||
|   mutate( |   mutate( | ||||||
|     lead_geom = lead(geometry), |     lead_geom = lead(geometry), | ||||||
|     lead_spd = lead(spd) |     lead_spd = lead(spd) | ||||||
|  | @ -93,7 +97,7 @@ segments_sf <- metro_summary_sf %>% | ||||||
|   ) %>% |   ) %>% | ||||||
|   ungroup() %>% |   ungroup() %>% | ||||||
|   as.data.frame() %>% |   as.data.frame() %>% | ||||||
|   select(rt, pid, des, pdist_bucket, spd, segment, lag_spd) %>% |   select(rt, pid, des, lat_bucket, lon_bucket, spd, segment, spd_calc) %>% | ||||||
|   st_as_sf() |   st_as_sf() | ||||||
| 
 | 
 | ||||||
| # get counts of routes | # get counts of routes | ||||||
|  | @ -101,8 +105,8 @@ route_counts <- metro_data %>% group_by(pid, rt, des) %>% summarise(route_count | ||||||
| 
 | 
 | ||||||
| # make charts | # make charts | ||||||
| ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ggplot(data = metro_summary %>% filter(pid %in% c("421", "422")), | ||||||
|        aes(x = pdist_bucket, |        aes(x = pdist, | ||||||
|            y = lag_spd)) + |            y = spd_calc)) + | ||||||
|   geom_point() + |   geom_point() + | ||||||
|   geom_smooth() + |   geom_smooth() + | ||||||
|   facet_grid(paste0(rt, "-", des) ~ .) |   facet_grid(paste0(rt, "-", des) ~ .) | ||||||
|  | @ -118,7 +122,7 @@ bbox <- c(left = min(metro_data$lon), | ||||||
| basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") | basemap <- get_stadiamap(bbox = bbox, zoom = 13, maptype = "stamen_toner_lite") | ||||||
| 
 | 
 | ||||||
| # A West | # A West | ||||||
| quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(lag_spd), c(0,0.25, 0.5, 0.75, 1)) | quantile(segments_sf %>% filter(pid %in% c("469")) %>% pull(spd_calc), c(0,0.25, 0.5, 0.75, 1), na.rm = TRUE) | ||||||
| 
 | 
 | ||||||
| for (route in unique(routes_categorized$name)){ | for (route in unique(routes_categorized$name)){ | ||||||
|   route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) |   route_focus <- routes_categorized %>% filter(name == route) %>% pull(pid) | ||||||
|  | @ -137,7 +141,7 @@ for (route in unique(routes_categorized$name)){ | ||||||
|           plot.caption = element_text(color = "grey")) + |           plot.caption = element_text(color = "grey")) + | ||||||
|     geom_sf(data = segments_sf %>% filter(pid %in% route_focus), |     geom_sf(data = segments_sf %>% filter(pid %in% route_focus), | ||||||
|             inherit.aes = FALSE, |             inherit.aes = FALSE, | ||||||
|             aes(color = lag_spd), |             aes(color = spd_calc), | ||||||
|             linewidth = 1) + |             linewidth = 1) + | ||||||
|     scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") |     scale_color_distiller(palette = "RdYlGn", direction = "reverse", limits = c(0,70), name = "Average speed or segment\n(calculated with locations, not reported speed)") | ||||||
|   ggsave(file = paste0("figures/", |   ggsave(file = paste0("figures/", | ||||||
|  |  | ||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue