laundry_status/laundry_status.R

70 lines
2.7 KiB
R

#setup ----
library(tidyverse)
library(influxdbclient)
library(rmarkdown)
setwd("/laundry_status")
# parameters needed to make connection to Database
token <- substr(read_file("data/api_key"), 1, 88)
org = "home_assistant"
bucket = "home_assistant"
## make connection to the influxDB bucket
home_assistant <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
token = token,
org = org)
update_interval <- 5
# ---- set variables
entities <- data.frame(name = c("washing machine", "dryer"), entity_id = c("lamp_a_power", "lamp_b_power"))
update_data <- function(){
values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -7d) |> filter(fn: (r) => r["entity_id"] == "lamp_b_power" or r["entity_id"] == "lamp_a_power") |> filter(fn: (r) => r["_field"] == "value") |> filter(fn: (r) => r["_measurement"] == "W")',
POSIXctCol = NULL)
values <- bind_rows(values)
values <- values %>%
rename(value = "_value",
time = "_time")
values <- values %>%
mutate(
time = as.POSIXct(time, tz = "America/Chicago"),
status = ifelse(value > 1, "on", "off")) %>%
mutate(end_time = time + minutes(1))
# ---- generate html
current_status <- as.list(NULL)
for (entity in entities$entity_id){
current_status[[entity]] <- ifelse(values %>% filter(entity_id %in% entity) %>% tail(1) %>% pull(value) > 5, "on", "off")
}
plot_1week <- ggplot(data = values) +
geom_rect(aes(xmin = end_time,
xmax = time,
ymin = ifelse(entity_id == "lamp_a_power", 0, 2) + 0.5,
ymax = ifelse(entity_id == "lamp_a_power", 0, 2) + 1.5,
fill = status)) +
scale_y_continuous() +
scale_x_datetime(date_breaks = "24 hours", date_labels = '%A', date_minor_breaks = "6 hours") +
theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) +
labs(title = "Last week")
plot_1day <- ggplot(data = values %>% filter(time >= max(values$time) - hours(24))) +
geom_rect(aes(xmin = end_time,
xmax = time,
ymin = ifelse(entity_id == "lamp_a_power", 0, 2) + 0.5,
ymax = ifelse(entity_id == "lamp_a_power", 0, 2) + 1.5,
fill = status)) +
scale_y_continuous() +
scale_x_datetime(breaks = seq(round_date(max(values$time), "4 hours") - hours(24), round_date(max(values$time), "4 hours"), by = "4 hours"), date_labels = '%I:%M %p', date_minor_breaks = "1 hours") +
theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) +
labs(title = "Last 24 hours")
render("laundry_status.Rmd")
}
for(i in 1:8640){
update_data()
Sys.sleep(60*update_interval)
}