#setup ---- library(tidyverse) library(influxdbclient) library(rmarkdown) if(Sys.info()[4] == "pseudotsuga") { setwd("~/Documents/dataProjects/laundry_status") } else { setwd("/laundry_status") } Sys.setenv(TZ='America/Chicago') # parameters needed to make connection to Database token <- substr(read_file("data/api_key"), 1, 88) org = "home_assistant" bucket = "home_assistant" ## make connection to the influxDB bucket home_assistant <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", token = token, org = org) update_interval <- 5 cronjob_interval <- 60 power_threshhold <- 10 # ---- set variables entities <- data.frame(name = c("washing machine", "dryer"), entity_id = c("washing_machine_power", "dryer_power")) colors <- data.frame(value = c("off", "on"), color = c("#bcbcbc", "#b45f06")) # Define a function to calculate the time difference calculateTimeAgo <- function(eventTime) { current <- Sys.time() # Get the current time timeDiff <- as.duration(current - eventTime) # Calculate the time difference # Convert the time difference to appropriate units and format the result if (timeDiff >= hours(24)) { result <- paste(round(timeDiff / dhours(24)), "days ago") } else if (timeDiff >= hours(1)) { result <- paste(round(timeDiff / dhours(1)), "hours ago") } else if (timeDiff >= minutes(1)) { result <- paste(round(timeDiff / dminutes(1)), "minutes ago") } else { result <- "Just now" } return(result) } # ---- update_data function update_data <- function(){ run_time <- Sys.time() values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -7d) |> filter(fn: (r) => r["entity_id"] == "washing_machine_power" or r["entity_id"] == "dryer_power") |> filter(fn: (r) => r["_field"] == "value") |> filter(fn: (r) => r["_measurement"] == "W")', POSIXctCol = NULL) values <- bind_rows(values) values <- values %>% rename(value = "_value", time = "_time") values <- values %>% mutate( time = as.POSIXct(time, tz = "America/Chicago"), status = ifelse(value > power_threshhold, "on", "off")) values_by_entity <- as.list(NULL) for(entity in entities$entity_id) { values_by_entity[[entity]] <- values %>% filter(entity_id %in% entity) %>% mutate(end_time = c(time[-1], run_time)) } values <- bind_rows(values_by_entity) washer_last_on <- values %>% filter(entity_id == entities$entity_id[1], value > power_threshhold) %>% tail(1) %>% pull(end_time) washer_last_off <- values %>% filter(entity_id == entities$entity_id[1], value < power_threshhold) %>% tail(1) %>% pull(end_time) dryer_last_on <- values %>% filter(entity_id == entities$entity_id[2], value > power_threshhold) %>% tail(1) %>% pull(end_time) dryer_last_off <- values %>% filter(entity_id == entities$entity_id[2], value < power_threshhold) %>% tail(1) %>% pull(end_time) current_status <- as.list(NULL) for (entity in entities$entity_id){ current_status[[entity]] <- ifelse(values %>% filter(entity_id %in% entity) %>% tail(1) %>% pull(value) > power_threshhold, "on", "off") } # ---- make plots plot_1day <- ggplot(data = values %>% filter(time >= max(values$end_time) - hours(24))) + geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2), y = entity_id, width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))), height = 0.5, fill = status)) + scale_y_discrete(breaks = entities$entity_id, labels = entities$name) + scale_x_datetime(breaks = seq(round_date(max(values$end_time), "4 hours") - hours(24), round_date(max(values$end_time), "4 hours"), by = "4 hours"), date_labels = '%I:%M %p', date_minor_breaks = "1 hours") + scale_fill_manual(values = colors$color) + theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + labs(title = "Last 24 hours", x = NULL, y = NULL, fill = NULL) plot_1week <- ggplot(data = values) + geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2), y = entity_id, width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))), height = 0.5, fill = status)) + scale_y_discrete(breaks = entities$entity_id, labels = entities$name) + scale_x_datetime(date_breaks = "1 day", date_labels = '%A', date_minor_breaks = "4 hours") + scale_fill_manual(values = colors$color) + theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + labs(title = "The past week", x = NULL, y = NULL, fill = NULL) plot_1week_days <- ggplot(data = values %>% filter(as.Date(time, tz = "America/Chicago") == as.Date(end_time, tz = "America/Chicago")) %>% mutate(date = as.Date(time, tz = "America/Chicago")) %>% left_join(. , entities, by = join_by(entity_id)) %>% mutate(name = factor(name, levels = c("washing machine", "dryer")))) + geom_rect(aes(xmin = date - hours(8), xmax = date + hours(8), ymin = ymd_hms(paste("2023-01-01", strftime(time, format = "%H:%M:%S"))), ymax = ymd_hms(paste("2023-01-01", strftime(end_time, format = "%H:%M:%S"))), fill = status)) + facet_grid(name ~ .) + scale_y_datetime(date_breaks = "4 hours", date_labels = '%I:%M %p', minor_breaks = "2 hours", expand = expansion(mult = 0)) + scale_x_datetime(date_breaks = "1 day", date_labels = '%A', minor_breaks = NULL) + scale_fill_manual(values = colors$color) + theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + labs(title = "The past week", x = "Day", y = "Time of Day", fill = NULL) # ---- generate html render("laundry_status.Rmd", output_dir = "html", output_file = "index.html") } # for(i in 1:(cronjob_interval/update_interval)){ # message(Sys.time()) # update_data() # Sys.sleep(60*update_interval) # } continue <- TRUE while(continue){ message(Sys.time()) update_data() Sys.sleep(60*update_interval) }