diff --git a/.Rhistory b/.Rhistory deleted file mode 100644 index 54b77fe..0000000 --- a/.Rhistory +++ /dev/null @@ -1,512 +0,0 @@ -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -ggplot() + -geom_point(aes(x = glencoe_air_monitor_temperature, -y = living_room_temperature, -color = entity_id)) + -# calcs voltage loss per hour -lm_calc$coefficients[2] * 60 * 60 -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -ggplot() + -geom_point(aes(x = glencoe_air_monitor_temperature, -y = living_room_temperature)) + -# calcs voltage loss per hour -lm_calc$coefficients[2] * 60 * 60 -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -ggplot() + -geom_point(aes(x = glencoe_air_monitor_temperature, -y = living_room_temperature)) -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature + 2.6) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature + 2.6) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature + 2.6) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -+ 2.6 -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature + 2.6) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -sensors <- c("living_room_humidity", "air_monitor_humidity") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_humidity -13) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_humidity)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_humidity), -method = "lm") -sensors <- c("living_room_humidity", "air_monitor_humidity") -sensors <- c("living_room_humidity", "glencoe_air_monitor_humidity") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = mean(value)) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_humidity -13) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_humidity)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_humidity), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -time_start <- ymd_hms("2023_07_14-12:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -lm_calc <- lm(value ~ time, data = values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = glencoe_air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) -sensors <- c("living_room_temperature", "air_monitor_temperature", "glencoe_air_monitor_temperature") -values['time_rounded'] <- round_date(ymd_hms(values$`_time`), unit = "minute") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-12:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -lm_calc <- lm(value ~ time, data = values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -lm_calc <- lm(value ~ time, data = values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -pivot_wider(id_cols = time_rounded, names_from = entity_id, values_from = value) %>% -mutate(glencoe_adjusted = air_monitor_temperature) %>% -ggplot() + -geom_point(aes(x = glencoe_adjusted, -y = living_room_temperature)) + -geom_smooth(aes(x = glencoe_adjusted, -y = living_room_temperature), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -ggplot() + -geom_point(aes(x = time_rounded, -y = value)) + -geom_smooth(aes(x = time_rounded, -y = value), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -ggplot() + -geom_point(aes(x = time_rounded, -y = value, -color = entiry_id)) + -geom_smooth(aes(x = time_rounded, -y = value), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -ggplot() + -geom_point(aes(x = time_rounded, -y = value, -color = entity_id)) + -geom_smooth(aes(x = time_rounded, -y = value), -method = "lm") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -24h) |> drop(columns: ["_start", "_stop"]) |> filter(fn: (r) => r._field =="value")') -values <- bind_rows(values) -values$value <- values$"_value" -sensors <- c("living_room_temperature", "air_monitor_temperature", "glencoe_air_monitor_temperature") -values['time_rounded'] <- round_date(ymd_hms(values$`_time`), unit = "minute") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -24h) |> drop(columns: ["_start", "_stop"]) |> filter(fn: (r) => r._field =="value")') -values <- bind_rows(values) -values$value <- values$"_value" -sensors <- c("living_room_temperature", "air_monitor_temperature", "glencoe_air_monitor_temperature") -#sensors <- c("living_room_humidity", "office_humidity", "living_room_co2_humidity", "office_co2_humidity", "bedroom_humidity") -#sensors <- c("air_monitor_air_monitor_battery_voltage") -values['time_rounded'] <- round_date(ymd_hms(values$`_time`), unit = "minute") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -24h) |> drop(columns: ["_start", "_stop"]) |> filter(fn: (r) => r._field =="value")') -values <- bind_rows(values) -values$value <- values$"_value" -sensors <- c("living_room_temperature", "air_monitor_temperature", "glencoe_air_monitor_temperature") -#sensors <- c("living_room_humidity", "office_humidity", "living_room_co2_humidity", "office_co2_humidity", "bedroom_humidity") -#sensors <- c("air_monitor_air_monitor_battery_voltage") -values['time_rounded'] <- round_date(ymd_hms(values$`_time`), unit = "minute") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -24h) |> drop(columns: ["_start", "_stop"]) |> filter(fn: (r) => r._field =="value")') -values <- bind_rows(values) -values$value <- values$"_value" -sensors <- c("living_room_temperature", "air_monitor_temperature", "glencoe_air_monitor_temperature") -#sensors <- c("living_room_humidity", "office_humidity", "living_room_co2_humidity", "office_co2_humidity", "bedroom_humidity") -#sensors <- c("air_monitor_air_monitor_battery_voltage") -values['time_rounded'] <- round_date(ymd_hms(values$`_time`), unit = "minute") -values %>% -filter(entity_id %in% sensors) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -time_start <- ymd_hms("2023_07_14-13:00:00") -time_end <- ymd_hms("2023_07_14-16:00:00") -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -ggplot() + -geom_point(aes(x = time, -y = value, -color = entity_id)) -values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end) %>% -group_by(time_rounded, entity_id) %>% -summarise(value = (mean(value)-32)/1.8) %>% -ggplot() + -geom_point(aes(x = time_rounded, -y = value, -color = entity_id)) + -geom_smooth(aes(x = time_rounded, -y = value), -method = "lm") -lm_calc <- lm(value ~ time, data = values %>% -filter(entity_id %in% sensors) %>% -filter(time > time_start, -time < time_end)) -View(lm_calc) -#setup ---- -library(tidyverse) -library(influxdbclient) -library(rmarkdown) -if(Sys.info()[4] == "pseudotsuga") { -setwd("~/Documents/dataProjects/laundry_status") -} else { -setwd("/laundry_status") -} -Sys.setenv(TZ='America/Chicago') -# parameters needed to make connection to Database -token <- substr(read_file("data/api_key"), 1, 88) -org = "home_assistant" -bucket = "home_assistant" -## make connection to the influxDB bucket -home_assistant <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net", -token = token, -org = org) -update_interval <- 5 -cronjob_interval <- 60 -power_threshhold <- 10 -# ---- set variables -entities <- data.frame(name = c("washing machine", "dryer"), entity_id = c("washing_machine_power", "dryer_power")) -update_data <- function(){ -run_time <- Sys.time() -values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -7d) |> filter(fn: (r) => r["entity_id"] == "washing_machine_power" or r["entity_id"] == "dryer_power") |> filter(fn: (r) => r["_field"] == "value") |> filter(fn: (r) => r["_measurement"] == "W")', -POSIXctCol = NULL) -values <- bind_rows(values) -values <- values %>% -rename(value = "_value", -time = "_time") -values <- values %>% -mutate( -time = as.POSIXct(time, tz = "America/Chicago"), -status = ifelse(value > power_threshhold, "on", "off")) -values_by_entity <- as.list(NULL) -for(entity in entities$entity_id) { -values_by_entity[[entity]] <- values %>% -filter(entity_id %in% entity) %>% -mutate(end_time = c(time[-1], run_time)) -} -values <- bind_rows(values_by_entity) -washer_last_on <- values %>% filter(entity_id == entities$entity_id[1], value > power_threshhold) %>% tail(1) %>% pull(end_time) -washer_last_off <- values %>% filter(entity_id == entities$entity_id[1], value < power_threshhold) %>% tail(1) %>% pull(end_time) -dryer_last_on <- values %>% filter(entity_id == entities$entity_id[2], value > power_threshhold) %>% tail(1) %>% pull(end_time) -dryer_last_off <- values %>% filter(entity_id == entities$entity_id[2], value < power_threshhold) %>% tail(1) %>% pull(end_time) -# ---- generate html -current_status <- as.list(NULL) -for (entity in entities$entity_id){ -current_status[[entity]] <- ifelse(values %>% filter(entity_id %in% entity) %>% tail(1) %>% pull(value) > power_threshhold, "on", "off") -} -plot_1week <- ggplot(data = values) + -geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2), -y = entity_id, -width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))), -height = 0.5, -fill = status)) + -scale_y_discrete(breaks = entities$entity_id, labels = entities$name) + -scale_x_datetime(date_breaks = "24 hours", date_labels = '%A', date_minor_breaks = "6 hours") + -theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + -labs(title = "The past week", -x = NULL, -y = NULL, -fill = NULL) -plot_1day <- ggplot(data = values %>% filter(time >= max(values$end_time) - hours(24))) + -geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2), -y = entity_id, -width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))), -height = 0.5, -fill = status)) + -scale_y_discrete(breaks = entities$entity_id, labels = entities$name) + -scale_x_datetime(breaks = seq(round_date(max(values$end_time), "4 hours") - hours(24), round_date(max(values$end_time), "4 hours"), by = "4 hours"), date_labels = '%I:%M %p', date_minor_breaks = "1 hours") + -theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) + -labs(title = "Last 24 hours", -x = NULL, -y = NULL, -fill = NULL) -render("laundry_status.Rmd", -output_dir = "html", -output_file = "index.html") -} -# for(i in 1:(cronjob_interval/update_interval)){ -# message(Sys.time()) -# update_data() -# Sys.sleep(60*update_interval) -# } -continue <- TRUE -while(continue){ -message(Sys.time()) -update_data() -Sys.sleep(60*update_interval) -} diff --git a/.gitignore b/.gitignore index 9c74b78..a436f8b 100644 --- a/.gitignore +++ b/.gitignore @@ -3,3 +3,4 @@ data/* figures/* html/index.html +.Rhistory