laundry_status/laundry_status.R

160 lines
6.4 KiB
R
Raw Normal View History

2023-11-20 10:07:46 -06:00
#setup ----
library(tidyverse)
library(influxdbclient)
library(rmarkdown)
2023-11-06 16:18:30 -06:00
2023-11-06 22:22:50 -06:00
if(Sys.info()[4] == "pseudotsuga") {
2023-11-06 22:16:25 -06:00
setwd("~/Documents/dataProjects/laundry_status")
} else {
setwd("/laundry_status")
}
2023-11-06 21:59:14 -06:00
Sys.setenv(TZ='America/Chicago')
2023-11-06 16:18:30 -06:00
# parameters needed to make connection to Database
2023-11-06 17:08:05 -06:00
token <- substr(read_file("data/api_key"), 1, 88)
2023-11-06 16:18:30 -06:00
org = "home_assistant"
bucket = "home_assistant"
## make connection to the influxDB bucket
home_assistant <- InfluxDBClient$new(url = "https://influxdb.dendroalsia.net",
token = token,
org = org)
2023-11-06 17:42:51 -06:00
update_interval <- 5
cronjob_interval <- 60
2023-11-21 14:06:51 -06:00
power_threshold_on <- 10
power_threshold_wash_door <- 4
power_threshold_dry_door <- 1.5
2023-11-06 16:18:30 -06:00
# ---- set variables
entities <- data.frame(name = c("washing machine", "dryer"), entity_id = c("washing_machine_power", "dryer_power"))
2023-11-06 16:18:30 -06:00
2023-11-21 11:24:27 -06:00
colors <- data.frame(value = c("off", "on"), color = c("#bcbcbc", "#b45f06"))
# Define a function to calculate the time difference
calculateTimeAgo <- function(eventTime) {
current <- Sys.time() # Get the current time
timeDiff <- as.duration(current - eventTime) # Calculate the time difference
# Convert the time difference to appropriate units and format the result
if (timeDiff >= hours(24)) {
result <- paste(round(timeDiff / dhours(24)), "days ago")
} else if (timeDiff >= hours(1)) {
result <- paste(round(timeDiff / dhours(1)), "hours ago")
} else if (timeDiff >= minutes(1)) {
result <- paste(round(timeDiff / dminutes(1)), "minutes ago")
} else {
result <- "Just now"
}
return(result)
}
# ---- update_data function
2023-11-06 17:27:49 -06:00
update_data <- function(){
2023-11-07 14:18:26 -06:00
run_time <- Sys.time()
values <- home_assistant$query('from(bucket: "home_assistant") |> range(start: -7d) |> filter(fn: (r) => r["entity_id"] == "washing_machine_power" or r["entity_id"] == "dryer_power") |> filter(fn: (r) => r["_field"] == "value") |> filter(fn: (r) => r["_measurement"] == "W")',
2023-11-06 18:15:11 -06:00
POSIXctCol = NULL)
2023-11-06 17:27:49 -06:00
values <- bind_rows(values)
values <- values %>%
2023-11-06 18:15:11 -06:00
rename(value = "_value",
time = "_time")
2023-11-06 17:27:49 -06:00
values <- values %>%
2023-11-06 18:15:11 -06:00
mutate(
time = as.POSIXct(time, tz = "America/Chicago"),
2023-11-21 14:06:51 -06:00
status = ifelse(value > power_threshold_on, "on", "off")) %>%
mutate(door_threshold = ifelse(entity_id == "washing_machine_power", power_threshold_wash_door, power_threshold_dry_door)) %>%
mutate(door = ifelse(value < door_threshold, "open", "closed"))
2023-11-06 17:27:49 -06:00
2023-11-07 14:18:26 -06:00
values_by_entity <- as.list(NULL)
for(entity in entities$entity_id) {
values_by_entity[[entity]] <- values %>%
filter(entity_id %in% entity) %>%
mutate(end_time = c(time[-1], run_time))
}
values <- bind_rows(values_by_entity)
2023-11-21 14:06:51 -06:00
last_change <- values %>%
group_by(entity_id, status) %>%
slice_max(n = 1, order_by = time) %>%
pivot_wider(id_cols = domain, names_from = c(entity_id, status), values_from = time)
status_door <- values %>%
group_by(entity_id) %>%
slice_max(n = 1, order_by = time) %>%
select(entity_id, door) %>%
pivot_wider(names_from = entity_id, values_from = door)
2023-11-06 22:16:25 -06:00
2023-11-06 17:27:49 -06:00
current_status <- as.list(NULL)
for (entity in entities$entity_id){
2023-11-21 14:06:51 -06:00
current_status[[entity]] <- ifelse(values %>% filter(entity_id %in% entity) %>% tail(1) %>% pull(value) > power_threshold_on, "on", "off")
2023-11-06 17:27:49 -06:00
}
2023-11-21 11:07:47 -06:00
# ---- make plots
2023-11-21 08:39:10 -06:00
plot_1day <- ggplot(data = values %>% filter(time >= max(values$end_time) - hours(24))) +
2023-11-07 14:18:26 -06:00
geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2),
y = entity_id,
width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))),
height = 0.5,
2023-11-06 17:27:49 -06:00
fill = status)) +
2023-11-07 14:18:26 -06:00
scale_y_discrete(breaks = entities$entity_id, labels = entities$name) +
2023-11-21 08:39:10 -06:00
scale_x_datetime(breaks = seq(round_date(max(values$end_time), "4 hours") - hours(24), round_date(max(values$end_time), "4 hours"), by = "4 hours"), date_labels = '%I:%M %p', date_minor_breaks = "1 hours") +
2023-11-21 11:24:27 -06:00
scale_fill_manual(values = colors$color) +
2023-11-06 17:27:49 -06:00
theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) +
2023-11-21 08:39:10 -06:00
labs(title = "Last 24 hours",
2023-11-07 14:25:45 -06:00
x = NULL,
y = NULL,
fill = NULL)
2023-11-06 17:27:49 -06:00
2023-11-21 08:39:10 -06:00
plot_1week <- ggplot(data = values) +
2023-11-07 14:18:26 -06:00
geom_tile(aes(x = time + seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))/2),
y = entity_id,
width = seconds(round(as.numeric(difftime(end_time, time, unit = "secs")))),
height = 0.5,
2023-11-06 17:27:49 -06:00
fill = status)) +
2023-11-07 14:18:26 -06:00
scale_y_discrete(breaks = entities$entity_id, labels = entities$name) +
2023-11-21 08:39:10 -06:00
scale_x_datetime(date_breaks = "1 day", date_labels = '%A', date_minor_breaks = "4 hours") +
2023-11-21 11:24:27 -06:00
scale_fill_manual(values = colors$color) +
2023-11-06 17:27:49 -06:00
theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) +
2023-11-21 08:39:10 -06:00
labs(title = "The past week",
2023-11-07 14:25:45 -06:00
x = NULL,
y = NULL,
fill = NULL)
2023-11-06 17:27:49 -06:00
2023-11-21 11:07:47 -06:00
plot_1week_days <- ggplot(data = values %>%
filter(as.Date(time, tz = "America/Chicago") == as.Date(end_time, tz = "America/Chicago")) %>%
mutate(date = as.Date(time, tz = "America/Chicago")) %>%
left_join(. , entities, by = join_by(entity_id)) %>%
mutate(name = factor(name, levels = c("washing machine", "dryer")))) +
geom_rect(aes(xmin = date - hours(8),
xmax = date + hours(8),
ymin = ymd_hms(paste("2023-01-01", strftime(time, format = "%H:%M:%S"))),
ymax = ymd_hms(paste("2023-01-01", strftime(end_time, format = "%H:%M:%S"))),
fill = status)) +
facet_grid(name ~ .) +
scale_y_datetime(date_breaks = "4 hours", date_labels = '%I:%M %p', minor_breaks = "2 hours", expand = expansion(mult = 0)) +
scale_x_datetime(date_breaks = "1 day", date_labels = '%A', minor_breaks = NULL) +
2023-11-21 11:24:27 -06:00
scale_fill_manual(values = colors$color) +
2023-11-21 11:07:47 -06:00
theme(axis.text.x = element_text(angle = 30, vjust = 0.5)) +
labs(title = "The past week",
x = "Day",
y = "Time of Day",
fill = NULL)
# ---- generate html
2023-11-07 09:44:54 -06:00
render("laundry_status.Rmd",
output_dir = "html",
output_file = "index.html")
2023-11-20 10:07:46 -06:00
2023-11-06 17:27:49 -06:00
}
2023-11-06 16:18:30 -06:00
2023-11-20 12:29:41 -06:00
# for(i in 1:(cronjob_interval/update_interval)){
# message(Sys.time())
# update_data()
# Sys.sleep(60*update_interval)
# }
continue <- TRUE
while(continue){
message(Sys.time())
2023-11-06 17:27:49 -06:00
update_data()
2023-11-06 17:42:51 -06:00
Sys.sleep(60*update_interval)
2023-11-06 17:27:49 -06:00
}