---
title: "City Compare"
output:
html_document:
toc: true
toc_depth: 5
toc_float:
collapsed: false
smooth_scroll: true
editor_options:
chunk_output_type: console
---
# Input Data & Configuration
## Libraries
```{r libs, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
date()
rm(list=ls())
library(tidyverse)
library(tidycensus)
library(sf)
library(openmeteo)
library(maps)
library(scales)
```
## API keys
```{r api_keys, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
# load census api key
census_api_key(key = substr(read_file(file = "api_keys/census_api_key"), 1, 40))
```
## Date ranges
```{r date_range, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
date_start <- "2010-01-01"
date_end <- "2024-12-31"
```
## Cities to compare
```{r cities, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
cities <- read_csv(file = "cities.csv")
cities <- cities %>%
mutate(city_name = paste0(City, " ", Type))
```
# Get data
## Census data
```{r census, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
populations <- list(NULL)
for(city in cities$city_name){
state <- cities %>% filter(city_name == city) %>% pull(State)
populations[[city]] <- get_acs(
geography = "place",
variables = "B01003_001",
state = state,
year = 2023,
geometry = TRUE
) %>%
filter(str_detect(NAME, city))
}
populations <- bind_rows(populations)
city_center <- populations %>%
st_centroid() %>%
st_transform(4326) %>% # Convert to WGS84 (standard lat/lon)
mutate(
lon = st_coordinates(.)[,1],
lat = st_coordinates(.)[,2]
) %>%
st_drop_geometry() %>%
select(lat, lon)
cities <- bind_cols(cities, populations, city_center)
cities <- cities %>% mutate(
density = estimate/as.double(st_area(geometry))*1000000
)
ggplot(cities) +
geom_col(aes(x = City,
y = estimate)) +
labs(title = "City Population",
x = "City",
y = NULL) +
scale_y_continuous(label = unit_format(unit = "K", scale = 1e-3, sep = ""))
ggplot(cities) +
geom_col(aes(x = City,
y = density)) +
labs(title = "City Density",
x = "City",
y = "people/km^2") +
scale_y_continuous()
```
## Map cities
```{r cities_map, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
ggplot(data = cities) +
geom_polygon(data = map_data(map = "state"),
aes(long, lat, group = group),
fill = "white", colour = "grey50") +
geom_point(aes(x = lon,
y = lat),
shape = 21,
fill = "lightgreen",
color = "black",
size = 4)
```
## weather
```{r weather, eval = TRUE, echo = TRUE, results = "show", warning = FALSE, error = TRUE, message = FALSE}
weather <- list(NULL)
for(city in cities$City){
city_info <- cities %>% filter(City == city)
city_run <- weather_history(
location = c(city_info %>% pull(lat), city_info %>% pull(lon)),
start = date_start,
end = date_end,
daily = c("apparent_temperature_max", "apparent_temperature_min"),
response_units = list(temperature_unit = "fahrenheit")
)
city_run$city <- city
weather[[city]] <- city_run
}
weather <- bind_rows(weather)
weather_summary <- weather %>%
mutate(year = year(ymd(date)),
month = month(ymd(date))) %>%
group_by(year, city) %>%
summarise(days_above_80 = sum(daily_apparent_temperature_max > 80)) %>%
group_by(city) %>%
summarise(median_days_above_80 = median(days_above_80))
ggplot(data = weather_summary) +
geom_col(aes(x = city,
y = median_days_above_80)) +
labs(title = "Days above 80°F",
y = "Median days per year",
x = "City",
fill = NULL)
ggplot(data = weather %>% pivot_longer(cols = starts_with("daily"), names_to = "max_min", values_to = "temperature") %>% filter(max_min %in% c("daily_apparent_temperature_min", "daily_apparent_temperature_max"))) +
geom_violin(aes(x = city,
y = temperature,
fill = max_min)) +
scale_fill_manual(labels = c("daily max", "daily min"),
values = c("firebrick", "dodgerblue")) +
labs(title = "Apparent Temperature",
y = "°F",
x = "City",
fill = NULL)
```