working r script

This commit is contained in:
Ben Varick 2023-11-03 15:07:08 -05:00
parent 8e1de6a7fc
commit 0f0cc0b0a5
Signed by: ben
SSH Key Fingerprint: SHA256:jWnpFDAcacYM5aPFpYRqlsamlDyKNpSj3jj+k4ojtUo

View File

@ -0,0 +1,107 @@
# ---- load libraries
library(tidyverse)
library(sf)
library(ggmap)
library(scales)
library(ggrepel)
setwd("~/Documents/Bay_Creek/bay_creek_data")
# ---- load data
block_data_2022 <- sf::read_sf("data/nip_bg_22/nip_bg_22.shp")
metadata_2022 <- read_csv("data/nip_bg_22/nip_metadata_22.csv")
extent <- st_bbox(block_data_2022)
# ---- define areas of interest
block_groups <- data.frame(name = c("Bay Creek 1", "Bay Creek 2"), geo_id = c("550250013001", "550250013002"))
centroids <- block_data_2022 %>%
left_join(block_groups, by = "geo_id") %>%
filter(geo_id %in% block_groups$geo_id) %>%
st_centroid() %>%
pull(geometry) %>%
transpose()
block_groups["lon"] <- unlist(centroids[[1]])
block_groups["lat"] <- unlist(centroids[[2]])
# ---- download basemap
zoom_level <- 12
if(file.exists(paste0("data/basemap_cache/basemap_", zoom_level, ".RData"))){
load(file = paste0("data/basemap_cache/basemap_", zoom_level, ".RData"))
} else {
register_stadiamaps(substr(read_file("data/stadia_api_key.txt"), 1, 36),
write = FALSE)
basemap <- ggmap::get_stadiamap(bbox = c(left = as.double(extent[1]),
bottom = as.double(extent[2]),
right = as.double(extent[3]),
top = as.double(extent[4])),
zoom = zoom_level,
maptype = "alidade_smooth",
color = "bw",
force = TRUE)
save(basemap_raster, file = paste0("data/basemap_cache/basemap_", zoom_level, ".RData"))
}
# ---- plot figures
# --- plot maps
ggmap(basemap) +
geom_sf(data = block_data_2022,
aes(fill = medhhinc),
inherit.aes = FALSE,
alpha = 0.6) +
geom_label_repel(data = block_groups,
aes(label = name,
y = lat,
x = lon),
min.segment.length = 0,
nudge_y = -0.03) +
# geom_sf_label(data = block_data_2022 %>% left_join(block_groups, by = "geo_id"),
# aes(label = name),
# inherit.aes = FALSE,
# nudge_x = 1,
# size = 2) +
theme(axis.text.x=element_blank(),
axis.text.y=element_blank(),
axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank()) +
scale_fill_continuous(label = scales::label_dollar(),
type = "viridis") +
labs(title = "Median Income",
fill = NULL)
ggsave(file = "figures/median_income_map.png",
device = "png",
width = 11,
height = 8.5,
units = "in")
# ---- plot graphs
ggplot(data = block_data_2022 %>% mutate(baycreek = geo_id %in% block_groups$geo_id) %>% left_join(block_groups, by = "geo_id") %>% arrange(medhhinc)) +
geom_hline(data = block_data_2022 %>% filter(geo_id == "Madison"),
aes(yintercept = medhhinc),
linetype = "dashed") +
geom_label(data = block_data_2022 %>% filter(geo_id == "Madison"),
aes(y = medhhinc,
x = 20),
label = "Madison median") +
geom_col(aes(x = reorder(geo_id, medhhinc, sum),
y = medhhinc,
fill = baycreek)) +
geom_label(aes(x = reorder(geo_id, medhhinc, sum),
y = medhhinc + 10000,
label = name)) +
scale_x_discrete(labels = NULL, breaks = NULL) +
scale_y_continuous(label = scales::label_dollar()) +
scale_fill_discrete(guide="none") +
theme(axis.text.x=element_blank(),
axis.title.x=element_blank()) +
labs(title = "Median Income by Block Group",
x = NULL,
y = NULL)
ggsave(file = "figures/median_income.png",
device = "png",
width = 11,
height = 8.5,
units = "in")